Identification of interval fuzzy models using recursive least square method
In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4368 |
---|---|
container_issue | |
container_start_page | 4362 |
container_title | |
container_volume | |
creator | Khanesar, M A Teshnehlab, M Kaynak, O |
description | In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative. |
doi_str_mv | 10.1109/ICSMC.2010.5641784 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5641784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5641784</ieee_id><sourcerecordid>5641784</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-76f972c885237d228bd6651f915f75f47e7f28f87485eb4778481b26c2b31d0b3</originalsourceid><addsrcrecordid>eNo1kNtKw0AURccbmNb-gL7MD6TOOZlbHiV4CVZ8UMG3kssZHclFM0mh_XoL1qfNZsGGtRm7BLEEEOl1nr08ZUsU-660BGPlEVukxoJEKbWyVhyzCJUxMWilTtjsH-j0lEUgNMYp4vs5m4XwJQQKCTZij3lN3eidr4rR9x3vHffdSMOmaLibdrstb_uamsCn4LsPPlA1DcFviDdUhJGHn6kYiLc0fvb1BTtzRRNoccg5e7u7fc0e4tXzfZ7drGIPRo2x0S41WFmrMDE1oi1rrRW4FJQzyklDxqF11kirqJRmb2qhRF1hmUAtymTOrv52PRGtvwffFsN2fTgl-QUiPlHq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of interval fuzzy models using recursive least square method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</creator><creatorcontrib>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</creatorcontrib><description>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 1424465869</identifier><identifier>ISBN: 9781424465866</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424465880</identifier><identifier>EISBN: 1424465877</identifier><identifier>EISBN: 1424465885</identifier><identifier>EISBN: 9781424465873</identifier><identifier>DOI: 10.1109/ICSMC.2010.5641784</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Fuzzy modeling ; Interval fuzzy model (INFUMO) ; Manganese ; Measurement uncertainty ; Recursive Least Square ; Robust identification ; Robustness</subject><ispartof>2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.4362-4368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5641784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5641784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khanesar, M A</creatorcontrib><creatorcontrib>Teshnehlab, M</creatorcontrib><creatorcontrib>Kaynak, O</creatorcontrib><title>Identification of interval fuzzy models using recursive least square method</title><title>2010 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</description><subject>Adaptation model</subject><subject>Fuzzy modeling</subject><subject>Interval fuzzy model (INFUMO)</subject><subject>Manganese</subject><subject>Measurement uncertainty</subject><subject>Recursive Least Square</subject><subject>Robust identification</subject><subject>Robustness</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1424465869</isbn><isbn>9781424465866</isbn><isbn>9781424465880</isbn><isbn>1424465877</isbn><isbn>1424465885</isbn><isbn>9781424465873</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AURccbmNb-gL7MD6TOOZlbHiV4CVZ8UMG3kssZHclFM0mh_XoL1qfNZsGGtRm7BLEEEOl1nr08ZUsU-660BGPlEVukxoJEKbWyVhyzCJUxMWilTtjsH-j0lEUgNMYp4vs5m4XwJQQKCTZij3lN3eidr4rR9x3vHffdSMOmaLibdrstb_uamsCn4LsPPlA1DcFviDdUhJGHn6kYiLc0fvb1BTtzRRNoccg5e7u7fc0e4tXzfZ7drGIPRo2x0S41WFmrMDE1oi1rrRW4FJQzyklDxqF11kirqJRmb2qhRF1hmUAtymTOrv52PRGtvwffFsN2fTgl-QUiPlHq</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Khanesar, M A</creator><creator>Teshnehlab, M</creator><creator>Kaynak, O</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Identification of interval fuzzy models using recursive least square method</title><author>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-76f972c885237d228bd6651f915f75f47e7f28f87485eb4778481b26c2b31d0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Fuzzy modeling</topic><topic>Interval fuzzy model (INFUMO)</topic><topic>Manganese</topic><topic>Measurement uncertainty</topic><topic>Recursive Least Square</topic><topic>Robust identification</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Khanesar, M A</creatorcontrib><creatorcontrib>Teshnehlab, M</creatorcontrib><creatorcontrib>Kaynak, O</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khanesar, M A</au><au>Teshnehlab, M</au><au>Kaynak, O</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of interval fuzzy models using recursive least square method</atitle><btitle>2010 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2010-10</date><risdate>2010</risdate><spage>4362</spage><epage>4368</epage><pages>4362-4368</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>1424465869</isbn><isbn>9781424465866</isbn><eisbn>9781424465880</eisbn><eisbn>1424465877</eisbn><eisbn>1424465885</eisbn><eisbn>9781424465873</eisbn><abstract>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2010.5641784</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.4362-4368 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_5641784 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model Fuzzy modeling Interval fuzzy model (INFUMO) Manganese Measurement uncertainty Recursive Least Square Robust identification Robustness |
title | Identification of interval fuzzy models using recursive least square method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20interval%20fuzzy%20models%20using%20recursive%20least%20square%20method&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Khanesar,%20M%20A&rft.date=2010-10&rft.spage=4362&rft.epage=4368&rft.pages=4362-4368&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=1424465869&rft.isbn_list=9781424465866&rft_id=info:doi/10.1109/ICSMC.2010.5641784&rft_dat=%3Cieee_6IE%3E5641784%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424465880&rft.eisbn_list=1424465877&rft.eisbn_list=1424465885&rft.eisbn_list=9781424465873&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5641784&rfr_iscdi=true |