Identification of interval fuzzy models using recursive least square method

In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khanesar, M A, Teshnehlab, M, Kaynak, O
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4368
container_issue
container_start_page 4362
container_title
container_volume
creator Khanesar, M A
Teshnehlab, M
Kaynak, O
description In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.
doi_str_mv 10.1109/ICSMC.2010.5641784
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5641784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5641784</ieee_id><sourcerecordid>5641784</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-76f972c885237d228bd6651f915f75f47e7f28f87485eb4778481b26c2b31d0b3</originalsourceid><addsrcrecordid>eNo1kNtKw0AURccbmNb-gL7MD6TOOZlbHiV4CVZ8UMG3kssZHclFM0mh_XoL1qfNZsGGtRm7BLEEEOl1nr08ZUsU-660BGPlEVukxoJEKbWyVhyzCJUxMWilTtjsH-j0lEUgNMYp4vs5m4XwJQQKCTZij3lN3eidr4rR9x3vHffdSMOmaLibdrstb_uamsCn4LsPPlA1DcFviDdUhJGHn6kYiLc0fvb1BTtzRRNoccg5e7u7fc0e4tXzfZ7drGIPRo2x0S41WFmrMDE1oi1rrRW4FJQzyklDxqF11kirqJRmb2qhRF1hmUAtymTOrv52PRGtvwffFsN2fTgl-QUiPlHq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of interval fuzzy models using recursive least square method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</creator><creatorcontrib>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</creatorcontrib><description>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 1424465869</identifier><identifier>ISBN: 9781424465866</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424465880</identifier><identifier>EISBN: 1424465877</identifier><identifier>EISBN: 1424465885</identifier><identifier>EISBN: 9781424465873</identifier><identifier>DOI: 10.1109/ICSMC.2010.5641784</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Fuzzy modeling ; Interval fuzzy model (INFUMO) ; Manganese ; Measurement uncertainty ; Recursive Least Square ; Robust identification ; Robustness</subject><ispartof>2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.4362-4368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5641784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5641784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khanesar, M A</creatorcontrib><creatorcontrib>Teshnehlab, M</creatorcontrib><creatorcontrib>Kaynak, O</creatorcontrib><title>Identification of interval fuzzy models using recursive least square method</title><title>2010 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</description><subject>Adaptation model</subject><subject>Fuzzy modeling</subject><subject>Interval fuzzy model (INFUMO)</subject><subject>Manganese</subject><subject>Measurement uncertainty</subject><subject>Recursive Least Square</subject><subject>Robust identification</subject><subject>Robustness</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1424465869</isbn><isbn>9781424465866</isbn><isbn>9781424465880</isbn><isbn>1424465877</isbn><isbn>1424465885</isbn><isbn>9781424465873</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AURccbmNb-gL7MD6TOOZlbHiV4CVZ8UMG3kssZHclFM0mh_XoL1qfNZsGGtRm7BLEEEOl1nr08ZUsU-660BGPlEVukxoJEKbWyVhyzCJUxMWilTtjsH-j0lEUgNMYp4vs5m4XwJQQKCTZij3lN3eidr4rR9x3vHffdSMOmaLibdrstb_uamsCn4LsPPlA1DcFviDdUhJGHn6kYiLc0fvb1BTtzRRNoccg5e7u7fc0e4tXzfZ7drGIPRo2x0S41WFmrMDE1oi1rrRW4FJQzyklDxqF11kirqJRmb2qhRF1hmUAtymTOrv52PRGtvwffFsN2fTgl-QUiPlHq</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Khanesar, M A</creator><creator>Teshnehlab, M</creator><creator>Kaynak, O</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Identification of interval fuzzy models using recursive least square method</title><author>Khanesar, M A ; Teshnehlab, M ; Kaynak, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-76f972c885237d228bd6651f915f75f47e7f28f87485eb4778481b26c2b31d0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Fuzzy modeling</topic><topic>Interval fuzzy model (INFUMO)</topic><topic>Manganese</topic><topic>Measurement uncertainty</topic><topic>Recursive Least Square</topic><topic>Robust identification</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Khanesar, M A</creatorcontrib><creatorcontrib>Teshnehlab, M</creatorcontrib><creatorcontrib>Kaynak, O</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khanesar, M A</au><au>Teshnehlab, M</au><au>Kaynak, O</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of interval fuzzy models using recursive least square method</atitle><btitle>2010 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2010-10</date><risdate>2010</risdate><spage>4362</spage><epage>4368</epage><pages>4362-4368</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>1424465869</isbn><isbn>9781424465866</isbn><eisbn>9781424465880</eisbn><eisbn>1424465877</eisbn><eisbn>1424465885</eisbn><eisbn>9781424465873</eisbn><abstract>In this paper, we present a new method of interval fuzzy model identification. Unlike the previously introduced methods, this method uses recursive least square methods to estimate the parameters. The idea behind interval fuzzy systems is to introduce optimal lower and upper bound fuzzy systems that define the band which contains all the measurement values. This results in lower and upper fuzzy models or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). This type of modeling has various applications such as nonlinear circuits modeling. There has been tremendous amount of activities to use linear matrix inequality based techniques to design a controller for this type of fuzzy systems. The fact that the actual desired data must lie between upper and lower fuzzy systems, introduces some constrains on the identification process of the lower and upper fuzzy systems. We would introduce a cost function which includes the violation of constrains and try to find an adaptation law which minimizes this cost function and at the same time tries to be less conservative.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2010.5641784</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.4362-4368
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_5641784
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Fuzzy modeling
Interval fuzzy model (INFUMO)
Manganese
Measurement uncertainty
Recursive Least Square
Robust identification
Robustness
title Identification of interval fuzzy models using recursive least square method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20interval%20fuzzy%20models%20using%20recursive%20least%20square%20method&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Khanesar,%20M%20A&rft.date=2010-10&rft.spage=4362&rft.epage=4368&rft.pages=4362-4368&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=1424465869&rft.isbn_list=9781424465866&rft_id=info:doi/10.1109/ICSMC.2010.5641784&rft_dat=%3Cieee_6IE%3E5641784%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424465880&rft.eisbn_list=1424465877&rft.eisbn_list=1424465885&rft.eisbn_list=9781424465873&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5641784&rfr_iscdi=true