"Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells

Effective light trapping can be realized in thin film solar cells by including a reflector between the substrate and device structure. Light trapping can significantly improve the performance of almost any solar cell, although the practical attainment of high levels of light trapping has been elusiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mauk, M.G., Burch, P.A., Johnson, S.W., Goodwin, T.A., Barnett, A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 147
container_title
container_volume
creator Mauk, M.G.
Burch, P.A.
Johnson, S.W.
Goodwin, T.A.
Barnett, A.M.
description Effective light trapping can be realized in thin film solar cells by including a reflector between the substrate and device structure. Light trapping can significantly improve the performance of almost any solar cell, although the practical attainment of high levels of light trapping has been elusive in at least several important types of solar cells. In many cases, the full potential of light trapping has not been realized due to difficulties in combining a thin solar cell structure with an effective backside reflector. We report a new method for incorporating so-called "buried mirrors" between the supporting substrate and epitaxial device layers that is widely applicable to thin-film crystalline silicon and Ill-V solar cells. We form the mirror as a multilayer coating of amorphous or polycrystalline dielectrics, metals, and/or semiconductors deposited as a mask on the substrate. The thin-film solar cell structure (emitter and base layers) is formed over the mask by epitaxial lateral overgrowth. This approach provides very high backside reflectivities over a wide wavelength bandwidth and over a wide range of angles of incidence. The technique is compatible with different mirror structures and materials, and is superior to the more common epitaxial AlAs/GaAs quarter-wavelength stack Bragg reflectors used for backside mirrors in GaAs-based solar cells, LEDs, and vertical cavity lasers.
doi_str_mv 10.1109/PVSC.1996.563969
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_563969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>563969</ieee_id><sourcerecordid>563969</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-15423ecbce9249abfdace2b6f75d62e0366a47bd9377e2c49713c75c606db61a3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhQMq2Fb34ip0P508ZpJmqcWqUFDwsS2Z5E57JfMgSUH_vZW6Ohw-OHwcQm44W3DOTPn6-bZacGPUolbSKHNGpkwvmZRcqeqcTBhXrFhKzS_JNKUvxgSTik_Ifn5_iAh-TjvINpQeIYDLEV2ZoEM39P7g8hBphPYPDDHR9lgD7vaZ5mjHEfsdxZ7CiNl-ow0077EvWgwdTUOwkToIIV2Ri9aGBNf_OSMf64f31VOxeXl8Xt1tCuRa5ILXlZDgGgdGVMY2rbcORKNaXXsl4CitbKUbb6TWIFxlNJdO104x5RvFrZyR29MuAsB2jNjZ-LM9nSJ_Ad8fWEo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>"Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mauk, M.G. ; Burch, P.A. ; Johnson, S.W. ; Goodwin, T.A. ; Barnett, A.M.</creator><creatorcontrib>Mauk, M.G. ; Burch, P.A. ; Johnson, S.W. ; Goodwin, T.A. ; Barnett, A.M.</creatorcontrib><description>Effective light trapping can be realized in thin film solar cells by including a reflector between the substrate and device structure. Light trapping can significantly improve the performance of almost any solar cell, although the practical attainment of high levels of light trapping has been elusive in at least several important types of solar cells. In many cases, the full potential of light trapping has not been realized due to difficulties in combining a thin solar cell structure with an effective backside reflector. We report a new method for incorporating so-called "buried mirrors" between the supporting substrate and epitaxial device layers that is widely applicable to thin-film crystalline silicon and Ill-V solar cells. We form the mirror as a multilayer coating of amorphous or polycrystalline dielectrics, metals, and/or semiconductors deposited as a mask on the substrate. The thin-film solar cell structure (emitter and base layers) is formed over the mask by epitaxial lateral overgrowth. This approach provides very high backside reflectivities over a wide wavelength bandwidth and over a wide range of angles of incidence. The technique is compatible with different mirror structures and materials, and is superior to the more common epitaxial AlAs/GaAs quarter-wavelength stack Bragg reflectors used for backside mirrors in GaAs-based solar cells, LEDs, and vertical cavity lasers.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 0780331664</identifier><identifier>ISBN: 9780780331662</identifier><identifier>DOI: 10.1109/PVSC.1996.563969</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coatings ; Crystallization ; Dielectric substrates ; Dielectric thin films ; Mirrors ; Nonhomogeneous media ; Photovoltaic cells ; Semiconductor thin films ; Silicon ; Thin film devices</subject><ispartof>Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, 1996, p.147-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/563969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/563969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mauk, M.G.</creatorcontrib><creatorcontrib>Burch, P.A.</creatorcontrib><creatorcontrib>Johnson, S.W.</creatorcontrib><creatorcontrib>Goodwin, T.A.</creatorcontrib><creatorcontrib>Barnett, A.M.</creatorcontrib><title>"Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells</title><title>Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996</title><addtitle>PVSC</addtitle><description>Effective light trapping can be realized in thin film solar cells by including a reflector between the substrate and device structure. Light trapping can significantly improve the performance of almost any solar cell, although the practical attainment of high levels of light trapping has been elusive in at least several important types of solar cells. In many cases, the full potential of light trapping has not been realized due to difficulties in combining a thin solar cell structure with an effective backside reflector. We report a new method for incorporating so-called "buried mirrors" between the supporting substrate and epitaxial device layers that is widely applicable to thin-film crystalline silicon and Ill-V solar cells. We form the mirror as a multilayer coating of amorphous or polycrystalline dielectrics, metals, and/or semiconductors deposited as a mask on the substrate. The thin-film solar cell structure (emitter and base layers) is formed over the mask by epitaxial lateral overgrowth. This approach provides very high backside reflectivities over a wide wavelength bandwidth and over a wide range of angles of incidence. The technique is compatible with different mirror structures and materials, and is superior to the more common epitaxial AlAs/GaAs quarter-wavelength stack Bragg reflectors used for backside mirrors in GaAs-based solar cells, LEDs, and vertical cavity lasers.</description><subject>Coatings</subject><subject>Crystallization</subject><subject>Dielectric substrates</subject><subject>Dielectric thin films</subject><subject>Mirrors</subject><subject>Nonhomogeneous media</subject><subject>Photovoltaic cells</subject><subject>Semiconductor thin films</subject><subject>Silicon</subject><subject>Thin film devices</subject><issn>0160-8371</issn><isbn>0780331664</isbn><isbn>9780780331662</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLAzEUhQMq2Fb34ip0P508ZpJmqcWqUFDwsS2Z5E57JfMgSUH_vZW6Ohw-OHwcQm44W3DOTPn6-bZacGPUolbSKHNGpkwvmZRcqeqcTBhXrFhKzS_JNKUvxgSTik_Ifn5_iAh-TjvINpQeIYDLEV2ZoEM39P7g8hBphPYPDDHR9lgD7vaZ5mjHEfsdxZ7CiNl-ow0077EvWgwdTUOwkToIIV2Ri9aGBNf_OSMf64f31VOxeXl8Xt1tCuRa5ILXlZDgGgdGVMY2rbcORKNaXXsl4CitbKUbb6TWIFxlNJdO104x5RvFrZyR29MuAsB2jNjZ-LM9nSJ_Ad8fWEo</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Mauk, M.G.</creator><creator>Burch, P.A.</creator><creator>Johnson, S.W.</creator><creator>Goodwin, T.A.</creator><creator>Barnett, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>"Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells</title><author>Mauk, M.G. ; Burch, P.A. ; Johnson, S.W. ; Goodwin, T.A. ; Barnett, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-15423ecbce9249abfdace2b6f75d62e0366a47bd9377e2c49713c75c606db61a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Coatings</topic><topic>Crystallization</topic><topic>Dielectric substrates</topic><topic>Dielectric thin films</topic><topic>Mirrors</topic><topic>Nonhomogeneous media</topic><topic>Photovoltaic cells</topic><topic>Semiconductor thin films</topic><topic>Silicon</topic><topic>Thin film devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Mauk, M.G.</creatorcontrib><creatorcontrib>Burch, P.A.</creatorcontrib><creatorcontrib>Johnson, S.W.</creatorcontrib><creatorcontrib>Goodwin, T.A.</creatorcontrib><creatorcontrib>Barnett, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mauk, M.G.</au><au>Burch, P.A.</au><au>Johnson, S.W.</au><au>Goodwin, T.A.</au><au>Barnett, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>"Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells</atitle><btitle>Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996</btitle><stitle>PVSC</stitle><date>1996</date><risdate>1996</risdate><spage>147</spage><epage>150</epage><pages>147-150</pages><issn>0160-8371</issn><isbn>0780331664</isbn><isbn>9780780331662</isbn><abstract>Effective light trapping can be realized in thin film solar cells by including a reflector between the substrate and device structure. Light trapping can significantly improve the performance of almost any solar cell, although the practical attainment of high levels of light trapping has been elusive in at least several important types of solar cells. In many cases, the full potential of light trapping has not been realized due to difficulties in combining a thin solar cell structure with an effective backside reflector. We report a new method for incorporating so-called "buried mirrors" between the supporting substrate and epitaxial device layers that is widely applicable to thin-film crystalline silicon and Ill-V solar cells. We form the mirror as a multilayer coating of amorphous or polycrystalline dielectrics, metals, and/or semiconductors deposited as a mask on the substrate. The thin-film solar cell structure (emitter and base layers) is formed over the mask by epitaxial lateral overgrowth. This approach provides very high backside reflectivities over a wide wavelength bandwidth and over a wide range of angles of incidence. The technique is compatible with different mirror structures and materials, and is superior to the more common epitaxial AlAs/GaAs quarter-wavelength stack Bragg reflectors used for backside mirrors in GaAs-based solar cells, LEDs, and vertical cavity lasers.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.1996.563969</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0160-8371
ispartof Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, 1996, p.147-150
issn 0160-8371
language eng
recordid cdi_ieee_primary_563969
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Coatings
Crystallization
Dielectric substrates
Dielectric thin films
Mirrors
Nonhomogeneous media
Photovoltaic cells
Semiconductor thin films
Silicon
Thin film devices
title "Buried" metal/dielectric/semiconductor reflectors for light trapping in epitaxial thin-film solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=%22Buried%22%20metal/dielectric/semiconductor%20reflectors%20for%20light%20trapping%20in%20epitaxial%20thin-film%20solar%20cells&rft.btitle=Conference%20Record%20of%20the%20Twenty%20Fifth%20IEEE%20Photovoltaic%20Specialists%20Conference%20-%201996&rft.au=Mauk,%20M.G.&rft.date=1996&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.issn=0160-8371&rft.isbn=0780331664&rft.isbn_list=9780780331662&rft_id=info:doi/10.1109/PVSC.1996.563969&rft_dat=%3Cieee_6IE%3E563969%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=563969&rfr_iscdi=true