Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope
Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.416-419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 3 |
container_start_page | 416 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 21 |
creator | Nakatani, Y Hayashi, T Itozaki, H |
description | Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell. |
doi_str_mv | 10.1109/TASC.2010.2086416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5638142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5638142</ieee_id><sourcerecordid>1692364436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gHhZBNHL1nxMstljWT8qVKq0PYdsmpWU7aYmrdB_b5aWHjx4mgx53ndmeJPkGqMBxqh4nA2n5YCg2BIkOGB-kvQwYyIjDLPT-EYMZ4IQep5chLBECIMA1ktGkyoY_6M21rWpq9MP1-y034WNahrbmnTqGuXT0jRNOg-2_UpVOlZRkU0_529P6bvV3gXt1uYyOatVE8zVofaT-cvzrBxl48nrWzkcZxoY3WRULWhOi5wyyOuK1aAJxoVmwM1CLKAgUBge91Qir3ilEUUqAnVVQY6V4jXtJ_d737V331sTNnJlg477qda4bZBCFAAgchHJh39JzAtCOQDlEb39gy7d1rfxDllgxgWngkQI76Hu5OBNLdferpTfSYxkF4LsQpBdCPIQQtTcHYxV0KqpvWq1DUchAZJzhDrvmz1njTHHbxbnYiD0F2MqjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915686382</pqid></control><display><type>article</type><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><source>IEEE Electronic Library (IEL)</source><creator>Nakatani, Y ; Hayashi, T ; Itozaki, H</creator><creatorcontrib>Nakatani, Y ; Hayashi, T ; Itozaki, H</creatorcontrib><description>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2086416</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrodes ; Electromagnets ; Electronics ; Energy ; Exact sciences and technology ; Grain boundary ; laser-SQUID microscope ; Lasers ; Magnetic fields ; Magnetic force microscopy ; Magnetic resonance imaging ; Microscopy ; Natural energy ; nondestructive testing ; Optoelectronic devices ; Photocurrent ; Photoelectric conversion ; Photoelectric effect ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor lasers ; Semiconductors ; solar cell ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; SQUID ; SQUIDs ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.416-419</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</citedby><cites>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5638142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5638142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24276002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakatani, Y</creatorcontrib><creatorcontrib>Hayashi, T</creatorcontrib><creatorcontrib>Itozaki, H</creatorcontrib><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrodes</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Grain boundary</subject><subject>laser-SQUID microscope</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Magnetic resonance imaging</subject><subject>Microscopy</subject><subject>Natural energy</subject><subject>nondestructive testing</subject><subject>Optoelectronic devices</subject><subject>Photocurrent</subject><subject>Photoelectric conversion</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>SQUID</subject><subject>SQUIDs</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LAzEQhhdRsFZ_gHhZBNHL1nxMstljWT8qVKq0PYdsmpWU7aYmrdB_b5aWHjx4mgx53ndmeJPkGqMBxqh4nA2n5YCg2BIkOGB-kvQwYyIjDLPT-EYMZ4IQep5chLBECIMA1ktGkyoY_6M21rWpq9MP1-y034WNahrbmnTqGuXT0jRNOg-2_UpVOlZRkU0_529P6bvV3gXt1uYyOatVE8zVofaT-cvzrBxl48nrWzkcZxoY3WRULWhOi5wyyOuK1aAJxoVmwM1CLKAgUBge91Qir3ilEUUqAnVVQY6V4jXtJ_d737V331sTNnJlg477qda4bZBCFAAgchHJh39JzAtCOQDlEb39gy7d1rfxDllgxgWngkQI76Hu5OBNLdferpTfSYxkF4LsQpBdCPIQQtTcHYxV0KqpvWq1DUchAZJzhDrvmz1njTHHbxbnYiD0F2MqjTA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Nakatani, Y</creator><creator>Hayashi, T</creator><creator>Itozaki, H</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20110601</creationdate><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><author>Nakatani, Y ; Hayashi, T ; Itozaki, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrodes</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Grain boundary</topic><topic>laser-SQUID microscope</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Magnetic resonance imaging</topic><topic>Microscopy</topic><topic>Natural energy</topic><topic>nondestructive testing</topic><topic>Optoelectronic devices</topic><topic>Photocurrent</topic><topic>Photoelectric conversion</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>SQUID</topic><topic>SQUIDs</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakatani, Y</creatorcontrib><creatorcontrib>Hayashi, T</creatorcontrib><creatorcontrib>Itozaki, H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakatani, Y</au><au>Hayashi, T</au><au>Itozaki, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>416</spage><epage>419</epage><pages>416-419</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2086416</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.416-419 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_5638142 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrodes Electromagnets Electronics Energy Exact sciences and technology Grain boundary laser-SQUID microscope Lasers Magnetic fields Magnetic force microscopy Magnetic resonance imaging Microscopy Natural energy nondestructive testing Optoelectronic devices Photocurrent Photoelectric conversion Photoelectric effect Photovoltaic cells Photovoltaic conversion Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductor lasers Semiconductors solar cell Solar cells Solar cells. Photoelectrochemical cells Solar energy SQUID SQUIDs Various equipment and components |
title | Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Polycrystalline%20Solar%20Cell%20Using%20a%20Laser-SQUID%20Microscope&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Nakatani,%20Y&rft.date=2011-06-01&rft.volume=21&rft.issue=3&rft.spage=416&rft.epage=419&rft.pages=416-419&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2086416&rft_dat=%3Cproquest_RIE%3E1692364436%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915686382&rft_id=info:pmid/&rft_ieee_id=5638142&rfr_iscdi=true |