Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope

Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.416-419
Hauptverfasser: Nakatani, Y, Hayashi, T, Itozaki, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 3
container_start_page 416
container_title IEEE transactions on applied superconductivity
container_volume 21
creator Nakatani, Y
Hayashi, T
Itozaki, H
description Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.
doi_str_mv 10.1109/TASC.2010.2086416
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5638142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5638142</ieee_id><sourcerecordid>1692364436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gHhZBNHL1nxMstljWT8qVKq0PYdsmpWU7aYmrdB_b5aWHjx4mgx53ndmeJPkGqMBxqh4nA2n5YCg2BIkOGB-kvQwYyIjDLPT-EYMZ4IQep5chLBECIMA1ktGkyoY_6M21rWpq9MP1-y034WNahrbmnTqGuXT0jRNOg-2_UpVOlZRkU0_529P6bvV3gXt1uYyOatVE8zVofaT-cvzrBxl48nrWzkcZxoY3WRULWhOi5wyyOuK1aAJxoVmwM1CLKAgUBge91Qir3ilEUUqAnVVQY6V4jXtJ_d737V331sTNnJlg477qda4bZBCFAAgchHJh39JzAtCOQDlEb39gy7d1rfxDllgxgWngkQI76Hu5OBNLdferpTfSYxkF4LsQpBdCPIQQtTcHYxV0KqpvWq1DUchAZJzhDrvmz1njTHHbxbnYiD0F2MqjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915686382</pqid></control><display><type>article</type><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><source>IEEE Electronic Library (IEL)</source><creator>Nakatani, Y ; Hayashi, T ; Itozaki, H</creator><creatorcontrib>Nakatani, Y ; Hayashi, T ; Itozaki, H</creatorcontrib><description>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2086416</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrodes ; Electromagnets ; Electronics ; Energy ; Exact sciences and technology ; Grain boundary ; laser-SQUID microscope ; Lasers ; Magnetic fields ; Magnetic force microscopy ; Magnetic resonance imaging ; Microscopy ; Natural energy ; nondestructive testing ; Optoelectronic devices ; Photocurrent ; Photoelectric conversion ; Photoelectric effect ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor lasers ; Semiconductors ; solar cell ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; SQUID ; SQUIDs ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.416-419</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</citedby><cites>FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5638142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5638142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24276002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakatani, Y</creatorcontrib><creatorcontrib>Hayashi, T</creatorcontrib><creatorcontrib>Itozaki, H</creatorcontrib><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrodes</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Grain boundary</subject><subject>laser-SQUID microscope</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Magnetic resonance imaging</subject><subject>Microscopy</subject><subject>Natural energy</subject><subject>nondestructive testing</subject><subject>Optoelectronic devices</subject><subject>Photocurrent</subject><subject>Photoelectric conversion</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>SQUID</subject><subject>SQUIDs</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LAzEQhhdRsFZ_gHhZBNHL1nxMstljWT8qVKq0PYdsmpWU7aYmrdB_b5aWHjx4mgx53ndmeJPkGqMBxqh4nA2n5YCg2BIkOGB-kvQwYyIjDLPT-EYMZ4IQep5chLBECIMA1ktGkyoY_6M21rWpq9MP1-y034WNahrbmnTqGuXT0jRNOg-2_UpVOlZRkU0_529P6bvV3gXt1uYyOatVE8zVofaT-cvzrBxl48nrWzkcZxoY3WRULWhOi5wyyOuK1aAJxoVmwM1CLKAgUBge91Qir3ilEUUqAnVVQY6V4jXtJ_d737V331sTNnJlg477qda4bZBCFAAgchHJh39JzAtCOQDlEb39gy7d1rfxDllgxgWngkQI76Hu5OBNLdferpTfSYxkF4LsQpBdCPIQQtTcHYxV0KqpvWq1DUchAZJzhDrvmz1njTHHbxbnYiD0F2MqjTA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Nakatani, Y</creator><creator>Hayashi, T</creator><creator>Itozaki, H</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20110601</creationdate><title>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</title><author>Nakatani, Y ; Hayashi, T ; Itozaki, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3ad373973547fb5f4c2119c546ed8d49249e6822a87b6bc030a211fbb471aa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrodes</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Grain boundary</topic><topic>laser-SQUID microscope</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Magnetic resonance imaging</topic><topic>Microscopy</topic><topic>Natural energy</topic><topic>nondestructive testing</topic><topic>Optoelectronic devices</topic><topic>Photocurrent</topic><topic>Photoelectric conversion</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>SQUID</topic><topic>SQUIDs</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakatani, Y</creatorcontrib><creatorcontrib>Hayashi, T</creatorcontrib><creatorcontrib>Itozaki, H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakatani, Y</au><au>Hayashi, T</au><au>Itozaki, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>416</spage><epage>419</epage><pages>416-419</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Laser-SQUID microscopy is a technique for nondestructive inspection of the electrical properties of semiconductors. In laser-SQUID microscopy, a photocurrent is induced by a laser with an energy larger than the band gap of the semiconductor sample. The magnetic field induced by this photocurrent is detected by a SQUID. In our experiment the laser was focused on the surface of the sample, and a high-temperature superconducting SQUID was positioned behind the sample to detect the magnetic field from the photocurrent. The sample was raster scanned while the relative position of the SQUID and laser spot was fixed. The sample used was a commercially available polycrystalline silicon solar cell containing a p-n junction. It had several line electrodes and a transport electrode layer on the surface, and the reverse side was covered with a metal electrode. We studied a piece of this polycrystalline solar cell using a 1065 nm laser. Magnetic field induced by the laser was observed successfully. The produced image shows the inhomogeneity of the solar cell.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2086416</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.416-419
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_5638142
source IEEE Electronic Library (IEL)
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrodes
Electromagnets
Electronics
Energy
Exact sciences and technology
Grain boundary
laser-SQUID microscope
Lasers
Magnetic fields
Magnetic force microscopy
Magnetic resonance imaging
Microscopy
Natural energy
nondestructive testing
Optoelectronic devices
Photocurrent
Photoelectric conversion
Photoelectric effect
Photovoltaic cells
Photovoltaic conversion
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor lasers
Semiconductors
solar cell
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
SQUID
SQUIDs
Various equipment and components
title Observation of Polycrystalline Solar Cell Using a Laser-SQUID Microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Polycrystalline%20Solar%20Cell%20Using%20a%20Laser-SQUID%20Microscope&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Nakatani,%20Y&rft.date=2011-06-01&rft.volume=21&rft.issue=3&rft.spage=416&rft.epage=419&rft.pages=416-419&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2086416&rft_dat=%3Cproquest_RIE%3E1692364436%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915686382&rft_id=info:pmid/&rft_ieee_id=5638142&rfr_iscdi=true