A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator

This paper proposes a composite control approach based on the robust feedback linearization and Extended Kalman Filter (EKF) to improve the tracking performance for the flexible link manipulators in the presence of torque disturbances. In this regard, first an EKF is employed to estimate the disturb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Atashzar, S F, Talebi, H A, Towhidkhah, F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1796
container_issue
container_start_page 1791
container_title
container_volume
creator Atashzar, S F
Talebi, H A
Towhidkhah, F
description This paper proposes a composite control approach based on the robust feedback linearization and Extended Kalman Filter (EKF) to improve the tracking performance for the flexible link manipulators in the presence of torque disturbances. In this regard, first an EKF is employed to estimate the disturbances, utilizing the uncertain nonlinear model of flexible link system in addition to noisy measurement data. The estimate is then used in the control strategy in order to eliminate the destructive effects of the disturbances. It can also be used as interaction data in some applications such as telerobotics. In the next step, a Lyapunov Redesign Feedback Linearization (LRFL) approach is utilized in order to alleviate the effect of model uncertainties, disturbance estimation error as well as nonlinearities presented in the dynamics of the redefined output. This output is selected as a point close to the tip to avoid the difficulties associated with the non-minimum phase behavior of the tip position. Simulation results performed on a single-link flexible manipulator are presented to illustrate the significant capability of this technique in tracking performance as well as disturbance estimation ability in uncertain and noisy situations.
doi_str_mv 10.1109/ISIE.2010.5637711
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5637711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5637711</ieee_id><sourcerecordid>5637711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a3ce87814a11908ed1f35e792a16780ad0900f61c8ca461e612814dd804195d23</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhSMqOOd-gPiSP9CZ26Rp-zjGpsOBD-593La3GtY1JUlBffC3m-HAp8u5fOccOIzdg5gDiPJx87ZZzVMRZaZlngNcsFtQqVJalqm4_BdCXbFJClomGcj8hs28N1X06VzF74T9LLiz1egDb4maCusD70xP6Mw3BmN7jsPgLNYfvLWOBxcB07_z2vbB2Y7blrcdfZqqoyT6DvyIvRnGDoN1no_-xGLPVy9r3hgfRldhXxMnH8zxxNyx6xY7T7PznbLderVbPifb16fNcrFNTClCgrKmIi9AIUApCmqglRnlZYqg80JgI0ohWg11UaPSQBrSCDdNIRSUWZPKKXv4izVEtB9cLHdf-_N08hecFmJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Atashzar, S F ; Talebi, H A ; Towhidkhah, F</creator><creatorcontrib>Atashzar, S F ; Talebi, H A ; Towhidkhah, F</creatorcontrib><description>This paper proposes a composite control approach based on the robust feedback linearization and Extended Kalman Filter (EKF) to improve the tracking performance for the flexible link manipulators in the presence of torque disturbances. In this regard, first an EKF is employed to estimate the disturbances, utilizing the uncertain nonlinear model of flexible link system in addition to noisy measurement data. The estimate is then used in the control strategy in order to eliminate the destructive effects of the disturbances. It can also be used as interaction data in some applications such as telerobotics. In the next step, a Lyapunov Redesign Feedback Linearization (LRFL) approach is utilized in order to alleviate the effect of model uncertainties, disturbance estimation error as well as nonlinearities presented in the dynamics of the redefined output. This output is selected as a point close to the tip to avoid the difficulties associated with the non-minimum phase behavior of the tip position. Simulation results performed on a single-link flexible manipulator are presented to illustrate the significant capability of this technique in tracking performance as well as disturbance estimation ability in uncertain and noisy situations.</description><identifier>ISSN: 2163-5137</identifier><identifier>ISBN: 1424463904</identifier><identifier>ISBN: 9781424463909</identifier><identifier>EISBN: 1424463920</identifier><identifier>EISBN: 9781424463916</identifier><identifier>EISBN: 9781424463923</identifier><identifier>EISBN: 1424463912</identifier><identifier>DOI: 10.1109/ISIE.2010.5637711</identifier><language>eng</language><publisher>IEEE</publisher><subject>Disturbance estimation ; Extended Kalman Filter ; Flexible link manipulator ; Friction ; Manipulator dynamics ; Mathematical model ; Noise ; Noise measurement ; Non-minimum Phase Systems ; Robust Feedback Linearization ; Robustness</subject><ispartof>2010 IEEE International Symposium on Industrial Electronics, 2010, p.1791-1796</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5637711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5637711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atashzar, S F</creatorcontrib><creatorcontrib>Talebi, H A</creatorcontrib><creatorcontrib>Towhidkhah, F</creatorcontrib><title>A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator</title><title>2010 IEEE International Symposium on Industrial Electronics</title><addtitle>ISIE</addtitle><description>This paper proposes a composite control approach based on the robust feedback linearization and Extended Kalman Filter (EKF) to improve the tracking performance for the flexible link manipulators in the presence of torque disturbances. In this regard, first an EKF is employed to estimate the disturbances, utilizing the uncertain nonlinear model of flexible link system in addition to noisy measurement data. The estimate is then used in the control strategy in order to eliminate the destructive effects of the disturbances. It can also be used as interaction data in some applications such as telerobotics. In the next step, a Lyapunov Redesign Feedback Linearization (LRFL) approach is utilized in order to alleviate the effect of model uncertainties, disturbance estimation error as well as nonlinearities presented in the dynamics of the redefined output. This output is selected as a point close to the tip to avoid the difficulties associated with the non-minimum phase behavior of the tip position. Simulation results performed on a single-link flexible manipulator are presented to illustrate the significant capability of this technique in tracking performance as well as disturbance estimation ability in uncertain and noisy situations.</description><subject>Disturbance estimation</subject><subject>Extended Kalman Filter</subject><subject>Flexible link manipulator</subject><subject>Friction</subject><subject>Manipulator dynamics</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Non-minimum Phase Systems</subject><subject>Robust Feedback Linearization</subject><subject>Robustness</subject><issn>2163-5137</issn><isbn>1424463904</isbn><isbn>9781424463909</isbn><isbn>1424463920</isbn><isbn>9781424463916</isbn><isbn>9781424463923</isbn><isbn>1424463912</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkFFLwzAUhSMqOOd-gPiSP9CZ26Rp-zjGpsOBD-593La3GtY1JUlBffC3m-HAp8u5fOccOIzdg5gDiPJx87ZZzVMRZaZlngNcsFtQqVJalqm4_BdCXbFJClomGcj8hs28N1X06VzF74T9LLiz1egDb4maCusD70xP6Mw3BmN7jsPgLNYfvLWOBxcB07_z2vbB2Y7blrcdfZqqoyT6DvyIvRnGDoN1no_-xGLPVy9r3hgfRldhXxMnH8zxxNyx6xY7T7PznbLderVbPifb16fNcrFNTClCgrKmIi9AIUApCmqglRnlZYqg80JgI0ohWg11UaPSQBrSCDdNIRSUWZPKKXv4izVEtB9cLHdf-_N08hecFmJA</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Atashzar, S F</creator><creator>Talebi, H A</creator><creator>Towhidkhah, F</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator</title><author>Atashzar, S F ; Talebi, H A ; Towhidkhah, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a3ce87814a11908ed1f35e792a16780ad0900f61c8ca461e612814dd804195d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Disturbance estimation</topic><topic>Extended Kalman Filter</topic><topic>Flexible link manipulator</topic><topic>Friction</topic><topic>Manipulator dynamics</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Non-minimum Phase Systems</topic><topic>Robust Feedback Linearization</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Atashzar, S F</creatorcontrib><creatorcontrib>Talebi, H A</creatorcontrib><creatorcontrib>Towhidkhah, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atashzar, S F</au><au>Talebi, H A</au><au>Towhidkhah, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator</atitle><btitle>2010 IEEE International Symposium on Industrial Electronics</btitle><stitle>ISIE</stitle><date>2010-07</date><risdate>2010</risdate><spage>1791</spage><epage>1796</epage><pages>1791-1796</pages><issn>2163-5137</issn><isbn>1424463904</isbn><isbn>9781424463909</isbn><eisbn>1424463920</eisbn><eisbn>9781424463916</eisbn><eisbn>9781424463923</eisbn><eisbn>1424463912</eisbn><abstract>This paper proposes a composite control approach based on the robust feedback linearization and Extended Kalman Filter (EKF) to improve the tracking performance for the flexible link manipulators in the presence of torque disturbances. In this regard, first an EKF is employed to estimate the disturbances, utilizing the uncertain nonlinear model of flexible link system in addition to noisy measurement data. The estimate is then used in the control strategy in order to eliminate the destructive effects of the disturbances. It can also be used as interaction data in some applications such as telerobotics. In the next step, a Lyapunov Redesign Feedback Linearization (LRFL) approach is utilized in order to alleviate the effect of model uncertainties, disturbance estimation error as well as nonlinearities presented in the dynamics of the redefined output. This output is selected as a point close to the tip to avoid the difficulties associated with the non-minimum phase behavior of the tip position. Simulation results performed on a single-link flexible manipulator are presented to illustrate the significant capability of this technique in tracking performance as well as disturbance estimation ability in uncertain and noisy situations.</abstract><pub>IEEE</pub><doi>10.1109/ISIE.2010.5637711</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-5137
ispartof 2010 IEEE International Symposium on Industrial Electronics, 2010, p.1791-1796
issn 2163-5137
language eng
recordid cdi_ieee_primary_5637711
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Disturbance estimation
Extended Kalman Filter
Flexible link manipulator
Friction
Manipulator dynamics
Mathematical model
Noise
Noise measurement
Non-minimum Phase Systems
Robust Feedback Linearization
Robustness
title A robust feedback linearization approach for tracking control of flexible-link manipulators using an EKF disturbance estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20robust%20feedback%20linearization%20approach%20for%20tracking%20control%20of%20flexible-link%20manipulators%20using%20an%20EKF%20disturbance%20estimator&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Industrial%20Electronics&rft.au=Atashzar,%20S%20F&rft.date=2010-07&rft.spage=1791&rft.epage=1796&rft.pages=1791-1796&rft.issn=2163-5137&rft.isbn=1424463904&rft.isbn_list=9781424463909&rft_id=info:doi/10.1109/ISIE.2010.5637711&rft_dat=%3Cieee_6IE%3E5637711%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424463920&rft.eisbn_list=9781424463916&rft.eisbn_list=9781424463923&rft.eisbn_list=1424463912&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5637711&rfr_iscdi=true