G-LMBPNN: A New Fashion Color Prediction Model

Since the current fashion color forecasts have some disadvantages in practical application, there is considerable interest in building models that can predict fashion value of the colors precisely and swiftly from historical data. This paper proposed a new forecasting model called G-LMBPNN (Gray Lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wu Ye-zhe, Sun Li, Le Jia-jin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue
container_start_page 501
container_title
container_volume
creator Wu Ye-zhe
Sun Li
Le Jia-jin
description Since the current fashion color forecasts have some disadvantages in practical application, there is considerable interest in building models that can predict fashion value of the colors precisely and swiftly from historical data. This paper proposed a new forecasting model called G-LMBPNN (Gray Levenberg-Marquardt Back Propagation Neural Network). It utilizes gray process to obscure the data sequence and learns the nonlinear relation through optimized BP neural network training. Finally, we whiten the simulation sequence to get the predicted value. We show the effectiveness of G-LMBPNN through a comprehensive experimental evaluation based on three models.
doi_str_mv 10.1109/CASoN.2010.118
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5636918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5636918</ieee_id><sourcerecordid>5636918</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-14dcd4e1505cc8eb90506dd799d125b715f327d7c506665a553cf582eae1717b3</originalsourceid><addsrcrecordid>eNotjEtLw0AURgdEqNRsu3EzfyBx7szcebiLwbZCGgt2X5KZG4xER5KC-O-tj29zOGfxMbYCUQAIf1uVz6kppPh1d8Eybx1oqbWzDmHBsnl-FedplFLBFSs2eb273zfNHS95Q5983c4vQ3rnVRrTxPcTxSGcfsIuRRqv2WXfjjNl_1yyw_rhUG3z-mnzWJV1PnhxykHHEDUBCgzBUecFChOj9T6CxM4C9kraaMM5G4Mtogo9OkktgQXbqSW7-bsdiOj4MQ1v7fR1RKOMB6e-Aaq1Pow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>G-LMBPNN: A New Fashion Color Prediction Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Ye-zhe ; Sun Li ; Le Jia-jin</creator><creatorcontrib>Wu Ye-zhe ; Sun Li ; Le Jia-jin</creatorcontrib><description>Since the current fashion color forecasts have some disadvantages in practical application, there is considerable interest in building models that can predict fashion value of the colors precisely and swiftly from historical data. This paper proposed a new forecasting model called G-LMBPNN (Gray Levenberg-Marquardt Back Propagation Neural Network). It utilizes gray process to obscure the data sequence and learns the nonlinear relation through optimized BP neural network training. Finally, we whiten the simulation sequence to get the predicted value. We show the effectiveness of G-LMBPNN through a comprehensive experimental evaluation based on three models.</description><identifier>ISBN: 9781424487851</identifier><identifier>ISBN: 1424487854</identifier><identifier>DOI: 10.1109/CASoN.2010.118</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; BP neural network ; data mining ; Data models ; fashion color prediction ; G-LMBPNN model ; gray theory ; Image color analysis ; Neurons ; Predictive models ; Training</subject><ispartof>2010 International Conference on Computational Aspects of Social Networks, 2010, p.501-504</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5636918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5636918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Ye-zhe</creatorcontrib><creatorcontrib>Sun Li</creatorcontrib><creatorcontrib>Le Jia-jin</creatorcontrib><title>G-LMBPNN: A New Fashion Color Prediction Model</title><title>2010 International Conference on Computational Aspects of Social Networks</title><addtitle>cason</addtitle><description>Since the current fashion color forecasts have some disadvantages in practical application, there is considerable interest in building models that can predict fashion value of the colors precisely and swiftly from historical data. This paper proposed a new forecasting model called G-LMBPNN (Gray Levenberg-Marquardt Back Propagation Neural Network). It utilizes gray process to obscure the data sequence and learns the nonlinear relation through optimized BP neural network training. Finally, we whiten the simulation sequence to get the predicted value. We show the effectiveness of G-LMBPNN through a comprehensive experimental evaluation based on three models.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>BP neural network</subject><subject>data mining</subject><subject>Data models</subject><subject>fashion color prediction</subject><subject>G-LMBPNN model</subject><subject>gray theory</subject><subject>Image color analysis</subject><subject>Neurons</subject><subject>Predictive models</subject><subject>Training</subject><isbn>9781424487851</isbn><isbn>1424487854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AURgdEqNRsu3EzfyBx7szcebiLwbZCGgt2X5KZG4xER5KC-O-tj29zOGfxMbYCUQAIf1uVz6kppPh1d8Eybx1oqbWzDmHBsnl-FedplFLBFSs2eb273zfNHS95Q5983c4vQ3rnVRrTxPcTxSGcfsIuRRqv2WXfjjNl_1yyw_rhUG3z-mnzWJV1PnhxykHHEDUBCgzBUecFChOj9T6CxM4C9kraaMM5G4Mtogo9OkktgQXbqSW7-bsdiOj4MQ1v7fR1RKOMB6e-Aaq1Pow</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Wu Ye-zhe</creator><creator>Sun Li</creator><creator>Le Jia-jin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>G-LMBPNN: A New Fashion Color Prediction Model</title><author>Wu Ye-zhe ; Sun Li ; Le Jia-jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-14dcd4e1505cc8eb90506dd799d125b715f327d7c506665a553cf582eae1717b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>BP neural network</topic><topic>data mining</topic><topic>Data models</topic><topic>fashion color prediction</topic><topic>G-LMBPNN model</topic><topic>gray theory</topic><topic>Image color analysis</topic><topic>Neurons</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Ye-zhe</creatorcontrib><creatorcontrib>Sun Li</creatorcontrib><creatorcontrib>Le Jia-jin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Ye-zhe</au><au>Sun Li</au><au>Le Jia-jin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>G-LMBPNN: A New Fashion Color Prediction Model</atitle><btitle>2010 International Conference on Computational Aspects of Social Networks</btitle><stitle>cason</stitle><date>2010-09</date><risdate>2010</risdate><spage>501</spage><epage>504</epage><pages>501-504</pages><isbn>9781424487851</isbn><isbn>1424487854</isbn><abstract>Since the current fashion color forecasts have some disadvantages in practical application, there is considerable interest in building models that can predict fashion value of the colors precisely and swiftly from historical data. This paper proposed a new forecasting model called G-LMBPNN (Gray Levenberg-Marquardt Back Propagation Neural Network). It utilizes gray process to obscure the data sequence and learns the nonlinear relation through optimized BP neural network training. Finally, we whiten the simulation sequence to get the predicted value. We show the effectiveness of G-LMBPNN through a comprehensive experimental evaluation based on three models.</abstract><pub>IEEE</pub><doi>10.1109/CASoN.2010.118</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424487851
ispartof 2010 International Conference on Computational Aspects of Social Networks, 2010, p.501-504
issn
language eng
recordid cdi_ieee_primary_5636918
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological system modeling
BP neural network
data mining
Data models
fashion color prediction
G-LMBPNN model
gray theory
Image color analysis
Neurons
Predictive models
Training
title G-LMBPNN: A New Fashion Color Prediction Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=G-LMBPNN:%20A%20New%20Fashion%20Color%20Prediction%20Model&rft.btitle=2010%20International%20Conference%20on%20Computational%20Aspects%20of%20Social%20Networks&rft.au=Wu%20Ye-zhe&rft.date=2010-09&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.isbn=9781424487851&rft.isbn_list=1424487854&rft_id=info:doi/10.1109/CASoN.2010.118&rft_dat=%3Cieee_6IE%3E5636918%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5636918&rfr_iscdi=true