Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter

Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peng Xiao, Miyi Duan, Chongzhao Han, Sijia Liu, Deqiang Han
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V2-58
container_issue
container_start_page V2-54
container_title
container_volume 2
creator Peng Xiao
Miyi Duan
Chongzhao Han
Sijia Liu
Deqiang Han
description Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.
doi_str_mv 10.1109/ICINA.2010.5636783
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5636783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5636783</ieee_id><sourcerecordid>5636783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bcb30c22e65f5213ac24b5636b5c2b349917d6e44c76d8ff7f20e0a5ef92c0873</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1LopT-AGz8Ayn2-JFkWVU8IrWw6YJd5ce4uKQJctJK_D2pqGA2o6NzNdJcQu44m3LOyodqXr3OpsAGVlrovBBn5IZLkLLgTOtzMgKuIVOykBf_Qr5f_olcX5NJ123ZMFIBMDkiuDQN7g-YYrOhrd2i62mfjPs88r7xmGht0gYzk9DQ1rl638UDUtc2PvaxbejAQ3SHpqHdRww9xZ1F79HTarmkIdY9pltyFUzd4eS0x2T19Liav2SLt-dqPltksWR9Zp0VzAGgVkEBF8aBtMdfrXJghSxLnnuNUrpc-yKEPABDZhSGEhwrcjEm979nIyKuv1LcmfS9PrUlfgChNFtZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</creator><creatorcontrib>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</creatorcontrib><description>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</description><identifier>ISSN: 2162-5476</identifier><identifier>ISBN: 142448104X</identifier><identifier>ISBN: 9781424481040</identifier><identifier>EISSN: 2162-5484</identifier><identifier>EISBN: 1424481066</identifier><identifier>EISBN: 9781424481064</identifier><identifier>DOI: 10.1109/ICINA.2010.5636783</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; IMM ; Mean shift (MS) ; Target Tracking ; Visual Tracking</subject><ispartof>2010 International Conference on Information, Networking and Automation (ICINA), 2010, Vol.2, p.V2-54-V2-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5636783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5636783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng Xiao</creatorcontrib><creatorcontrib>Miyi Duan</creatorcontrib><creatorcontrib>Chongzhao Han</creatorcontrib><creatorcontrib>Sijia Liu</creatorcontrib><creatorcontrib>Deqiang Han</creatorcontrib><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><title>2010 International Conference on Information, Networking and Automation (ICINA)</title><addtitle>ICINA</addtitle><description>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</description><subject>Computers</subject><subject>IMM</subject><subject>Mean shift (MS)</subject><subject>Target Tracking</subject><subject>Visual Tracking</subject><issn>2162-5476</issn><issn>2162-5484</issn><isbn>142448104X</isbn><isbn>9781424481040</isbn><isbn>1424481066</isbn><isbn>9781424481064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc1LopT-AGz8Ayn2-JFkWVU8IrWw6YJd5ce4uKQJctJK_D2pqGA2o6NzNdJcQu44m3LOyodqXr3OpsAGVlrovBBn5IZLkLLgTOtzMgKuIVOykBf_Qr5f_olcX5NJ123ZMFIBMDkiuDQN7g-YYrOhrd2i62mfjPs88r7xmGht0gYzk9DQ1rl638UDUtc2PvaxbejAQ3SHpqHdRww9xZ1F79HTarmkIdY9pltyFUzd4eS0x2T19Liav2SLt-dqPltksWR9Zp0VzAGgVkEBF8aBtMdfrXJghSxLnnuNUrpc-yKEPABDZhSGEhwrcjEm979nIyKuv1LcmfS9PrUlfgChNFtZ</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Peng Xiao</creator><creator>Miyi Duan</creator><creator>Chongzhao Han</creator><creator>Sijia Liu</creator><creator>Deqiang Han</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><author>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bcb30c22e65f5213ac24b5636b5c2b349917d6e44c76d8ff7f20e0a5ef92c0873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computers</topic><topic>IMM</topic><topic>Mean shift (MS)</topic><topic>Target Tracking</topic><topic>Visual Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng Xiao</creatorcontrib><creatorcontrib>Miyi Duan</creatorcontrib><creatorcontrib>Chongzhao Han</creatorcontrib><creatorcontrib>Sijia Liu</creatorcontrib><creatorcontrib>Deqiang Han</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng Xiao</au><au>Miyi Duan</au><au>Chongzhao Han</au><au>Sijia Liu</au><au>Deqiang Han</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</atitle><btitle>2010 International Conference on Information, Networking and Automation (ICINA)</btitle><stitle>ICINA</stitle><date>2010-10</date><risdate>2010</risdate><volume>2</volume><spage>V2-54</spage><epage>V2-58</epage><pages>V2-54-V2-58</pages><issn>2162-5476</issn><eissn>2162-5484</eissn><isbn>142448104X</isbn><isbn>9781424481040</isbn><eisbn>1424481066</eisbn><eisbn>9781424481064</eisbn><abstract>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</abstract><pub>IEEE</pub><doi>10.1109/ICINA.2010.5636783</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-5476
ispartof 2010 International Conference on Information, Networking and Automation (ICINA), 2010, Vol.2, p.V2-54-V2-58
issn 2162-5476
2162-5484
language eng
recordid cdi_ieee_primary_5636783
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computers
IMM
Mean shift (MS)
Target Tracking
Visual Tracking
title Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maneuvering%20object%20tracking%20under%20large-area%20occlusive%20condition%20using%20mean%20shift%20embedded%20IMM%20filter&rft.btitle=2010%20International%20Conference%20on%20Information,%20Networking%20and%20Automation%20(ICINA)&rft.au=Peng%20Xiao&rft.date=2010-10&rft.volume=2&rft.spage=V2-54&rft.epage=V2-58&rft.pages=V2-54-V2-58&rft.issn=2162-5476&rft.eissn=2162-5484&rft.isbn=142448104X&rft.isbn_list=9781424481040&rft_id=info:doi/10.1109/ICINA.2010.5636783&rft_dat=%3Cieee_6IE%3E5636783%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481066&rft.eisbn_list=9781424481064&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5636783&rfr_iscdi=true