Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter
Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V2-58 |
---|---|
container_issue | |
container_start_page | V2-54 |
container_title | |
container_volume | 2 |
creator | Peng Xiao Miyi Duan Chongzhao Han Sijia Liu Deqiang Han |
description | Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective. |
doi_str_mv | 10.1109/ICINA.2010.5636783 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5636783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5636783</ieee_id><sourcerecordid>5636783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bcb30c22e65f5213ac24b5636b5c2b349917d6e44c76d8ff7f20e0a5ef92c0873</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1LopT-AGz8Ayn2-JFkWVU8IrWw6YJd5ce4uKQJctJK_D2pqGA2o6NzNdJcQu44m3LOyodqXr3OpsAGVlrovBBn5IZLkLLgTOtzMgKuIVOykBf_Qr5f_olcX5NJ123ZMFIBMDkiuDQN7g-YYrOhrd2i62mfjPs88r7xmGht0gYzk9DQ1rl638UDUtc2PvaxbejAQ3SHpqHdRww9xZ1F79HTarmkIdY9pltyFUzd4eS0x2T19Liav2SLt-dqPltksWR9Zp0VzAGgVkEBF8aBtMdfrXJghSxLnnuNUrpc-yKEPABDZhSGEhwrcjEm979nIyKuv1LcmfS9PrUlfgChNFtZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</creator><creatorcontrib>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</creatorcontrib><description>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</description><identifier>ISSN: 2162-5476</identifier><identifier>ISBN: 142448104X</identifier><identifier>ISBN: 9781424481040</identifier><identifier>EISSN: 2162-5484</identifier><identifier>EISBN: 1424481066</identifier><identifier>EISBN: 9781424481064</identifier><identifier>DOI: 10.1109/ICINA.2010.5636783</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; IMM ; Mean shift (MS) ; Target Tracking ; Visual Tracking</subject><ispartof>2010 International Conference on Information, Networking and Automation (ICINA), 2010, Vol.2, p.V2-54-V2-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5636783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5636783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng Xiao</creatorcontrib><creatorcontrib>Miyi Duan</creatorcontrib><creatorcontrib>Chongzhao Han</creatorcontrib><creatorcontrib>Sijia Liu</creatorcontrib><creatorcontrib>Deqiang Han</creatorcontrib><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><title>2010 International Conference on Information, Networking and Automation (ICINA)</title><addtitle>ICINA</addtitle><description>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</description><subject>Computers</subject><subject>IMM</subject><subject>Mean shift (MS)</subject><subject>Target Tracking</subject><subject>Visual Tracking</subject><issn>2162-5476</issn><issn>2162-5484</issn><isbn>142448104X</isbn><isbn>9781424481040</isbn><isbn>1424481066</isbn><isbn>9781424481064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc1LopT-AGz8Ayn2-JFkWVU8IrWw6YJd5ce4uKQJctJK_D2pqGA2o6NzNdJcQu44m3LOyodqXr3OpsAGVlrovBBn5IZLkLLgTOtzMgKuIVOykBf_Qr5f_olcX5NJ123ZMFIBMDkiuDQN7g-YYrOhrd2i62mfjPs88r7xmGht0gYzk9DQ1rl638UDUtc2PvaxbejAQ3SHpqHdRww9xZ1F79HTarmkIdY9pltyFUzd4eS0x2T19Liav2SLt-dqPltksWR9Zp0VzAGgVkEBF8aBtMdfrXJghSxLnnuNUrpc-yKEPABDZhSGEhwrcjEm979nIyKuv1LcmfS9PrUlfgChNFtZ</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Peng Xiao</creator><creator>Miyi Duan</creator><creator>Chongzhao Han</creator><creator>Sijia Liu</creator><creator>Deqiang Han</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</title><author>Peng Xiao ; Miyi Duan ; Chongzhao Han ; Sijia Liu ; Deqiang Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bcb30c22e65f5213ac24b5636b5c2b349917d6e44c76d8ff7f20e0a5ef92c0873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computers</topic><topic>IMM</topic><topic>Mean shift (MS)</topic><topic>Target Tracking</topic><topic>Visual Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng Xiao</creatorcontrib><creatorcontrib>Miyi Duan</creatorcontrib><creatorcontrib>Chongzhao Han</creatorcontrib><creatorcontrib>Sijia Liu</creatorcontrib><creatorcontrib>Deqiang Han</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng Xiao</au><au>Miyi Duan</au><au>Chongzhao Han</au><au>Sijia Liu</au><au>Deqiang Han</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter</atitle><btitle>2010 International Conference on Information, Networking and Automation (ICINA)</btitle><stitle>ICINA</stitle><date>2010-10</date><risdate>2010</risdate><volume>2</volume><spage>V2-54</spage><epage>V2-58</epage><pages>V2-54-V2-58</pages><issn>2162-5476</issn><eissn>2162-5484</eissn><isbn>142448104X</isbn><isbn>9781424481040</isbn><eisbn>1424481066</eisbn><eisbn>9781424481064</eisbn><abstract>Visual tracking is the act of consistently locating a desired feature in each image of a given input sequence and it is typically complicated by several factors such as noise of sensors, motion in the scene, motion on the part of the observer and real-time constraints. In this paper, a novel visual tracking approach is proposed by jointly using mean shift and IMM, which can effectively deal with the visual tracking problem. The proposed approach can also resolve the target large-area occlusions. Based on the experimental results provided, it can be concluded that our proposed approach is rational and effective.</abstract><pub>IEEE</pub><doi>10.1109/ICINA.2010.5636783</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-5476 |
ispartof | 2010 International Conference on Information, Networking and Automation (ICINA), 2010, Vol.2, p.V2-54-V2-58 |
issn | 2162-5476 2162-5484 |
language | eng |
recordid | cdi_ieee_primary_5636783 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computers IMM Mean shift (MS) Target Tracking Visual Tracking |
title | Maneuvering object tracking under large-area occlusive condition using mean shift embedded IMM filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maneuvering%20object%20tracking%20under%20large-area%20occlusive%20condition%20using%20mean%20shift%20embedded%20IMM%20filter&rft.btitle=2010%20International%20Conference%20on%20Information,%20Networking%20and%20Automation%20(ICINA)&rft.au=Peng%20Xiao&rft.date=2010-10&rft.volume=2&rft.spage=V2-54&rft.epage=V2-58&rft.pages=V2-54-V2-58&rft.issn=2162-5476&rft.eissn=2162-5484&rft.isbn=142448104X&rft.isbn_list=9781424481040&rft_id=info:doi/10.1109/ICINA.2010.5636783&rft_dat=%3Cieee_6IE%3E5636783%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481066&rft.eisbn_list=9781424481064&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5636783&rfr_iscdi=true |