K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm

As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it is difficult to determine the cluster number and it is easy to be impacted by isolated points, propose the K-means multiple Clustering Method Based on Pseudo Parallel Genetic Algorithm. In the method, ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ge Xiufeng, Xing Changzheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 30
container_title
container_volume 1
creator Ge Xiufeng
Xing Changzheng
description As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it is difficult to determine the cluster number and it is easy to be impacted by isolated points, propose the K-means multiple Clustering Method Based on Pseudo Parallel Genetic Algorithm. In the method, adopt the strategy of Variable-Length Chromosome real-coded. Through the introduction of chromosome retreading and focusing operator, K-means algorithm can be perfectly combined with pseudo-parallel genetic algorithm. For the dynamic and directed adjustment of migration rate with the evolutionary process, we have improved the migration rate of PPGA. The results of repeated experiment show that the method can effectively solve the previous problem and it is a practical and effective clustering algorithm.
doi_str_mv 10.1109/IFITA.2010.186
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5635035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5635035</ieee_id><sourcerecordid>5635035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-38e71653a242574504e87110a336266812b355c71faeb5e289d51dc57999be193</originalsourceid><addsrcrecordid>eNo1j8tKw0AYRkekoK3ZunEzL5A698syBluDlRbJvkySv-3IJCmZZOHb26KuDgcOH3wIPVKypJTY52JVlNmSkasbdYMSqw0VTAitGCO3aP4vVM3Q_NpZZrTUdyiJ8YsQQq3Sioh7tH1PW3BdxB9TGP05AM7DFEcYfHfEnxDBDfUJv7gIDe47vIswNT3eucGFAAGvoYPR1zgLx37w46l9QLODCxGSPy5QuXot87d0s10XebZJvSVjyg1oqiR3TDCphSQCjL48c5wrppShrOJS1poeHFQSmLGNpE0ttbW2Amr5Aj39znoA2J8H37rhey8Vl4RL_gOxRU8x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ge Xiufeng ; Xing Changzheng</creator><creatorcontrib>Ge Xiufeng ; Xing Changzheng</creatorcontrib><description>As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it is difficult to determine the cluster number and it is easy to be impacted by isolated points, propose the K-means multiple Clustering Method Based on Pseudo Parallel Genetic Algorithm. In the method, adopt the strategy of Variable-Length Chromosome real-coded. Through the introduction of chromosome retreading and focusing operator, K-means algorithm can be perfectly combined with pseudo-parallel genetic algorithm. For the dynamic and directed adjustment of migration rate with the evolutionary process, we have improved the migration rate of PPGA. The results of repeated experiment show that the method can effectively solve the previous problem and it is a practical and effective clustering algorithm.</description><identifier>ISBN: 1424476216</identifier><identifier>ISBN: 9781424476213</identifier><identifier>EISBN: 9781424476220</identifier><identifier>EISBN: 1424476224</identifier><identifier>DOI: 10.1109/IFITA.2010.186</identifier><identifier>LCCN: 2010928757</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Biological cells ; Chromosome retreading ; Clustering ; Clustering algorithms ; Clustering methods ; Convergence ; Focusing operator ; Migration strategy ; Partitioning algorithms ; Pseudo-parallel genetic Algorithm</subject><ispartof>2010 International Forum on Information Technology and Applications, 2010, Vol.1, p.30-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5635035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5635035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge Xiufeng</creatorcontrib><creatorcontrib>Xing Changzheng</creatorcontrib><title>K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm</title><title>2010 International Forum on Information Technology and Applications</title><addtitle>ifita</addtitle><description>As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it is difficult to determine the cluster number and it is easy to be impacted by isolated points, propose the K-means multiple Clustering Method Based on Pseudo Parallel Genetic Algorithm. In the method, adopt the strategy of Variable-Length Chromosome real-coded. Through the introduction of chromosome retreading and focusing operator, K-means algorithm can be perfectly combined with pseudo-parallel genetic algorithm. For the dynamic and directed adjustment of migration rate with the evolutionary process, we have improved the migration rate of PPGA. The results of repeated experiment show that the method can effectively solve the previous problem and it is a practical and effective clustering algorithm.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Chromosome retreading</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Convergence</subject><subject>Focusing operator</subject><subject>Migration strategy</subject><subject>Partitioning algorithms</subject><subject>Pseudo-parallel genetic Algorithm</subject><isbn>1424476216</isbn><isbn>9781424476213</isbn><isbn>9781424476220</isbn><isbn>1424476224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKw0AYRkekoK3ZunEzL5A698syBluDlRbJvkySv-3IJCmZZOHb26KuDgcOH3wIPVKypJTY52JVlNmSkasbdYMSqw0VTAitGCO3aP4vVM3Q_NpZZrTUdyiJ8YsQQq3Sioh7tH1PW3BdxB9TGP05AM7DFEcYfHfEnxDBDfUJv7gIDe47vIswNT3eucGFAAGvoYPR1zgLx37w46l9QLODCxGSPy5QuXot87d0s10XebZJvSVjyg1oqiR3TDCphSQCjL48c5wrppShrOJS1poeHFQSmLGNpE0ttbW2Amr5Aj39znoA2J8H37rhey8Vl4RL_gOxRU8x</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Ge Xiufeng</creator><creator>Xing Changzheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm</title><author>Ge Xiufeng ; Xing Changzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-38e71653a242574504e87110a336266812b355c71faeb5e289d51dc57999be193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Chromosome retreading</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Convergence</topic><topic>Focusing operator</topic><topic>Migration strategy</topic><topic>Partitioning algorithms</topic><topic>Pseudo-parallel genetic Algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Ge Xiufeng</creatorcontrib><creatorcontrib>Xing Changzheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge Xiufeng</au><au>Xing Changzheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm</atitle><btitle>2010 International Forum on Information Technology and Applications</btitle><stitle>ifita</stitle><date>2010-07</date><risdate>2010</risdate><volume>1</volume><spage>30</spage><epage>33</epage><pages>30-33</pages><isbn>1424476216</isbn><isbn>9781424476213</isbn><eisbn>9781424476220</eisbn><eisbn>1424476224</eisbn><abstract>As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it is difficult to determine the cluster number and it is easy to be impacted by isolated points, propose the K-means multiple Clustering Method Based on Pseudo Parallel Genetic Algorithm. In the method, adopt the strategy of Variable-Length Chromosome real-coded. Through the introduction of chromosome retreading and focusing operator, K-means algorithm can be perfectly combined with pseudo-parallel genetic algorithm. For the dynamic and directed adjustment of migration rate with the evolutionary process, we have improved the migration rate of PPGA. The results of repeated experiment show that the method can effectively solve the previous problem and it is a practical and effective clustering algorithm.</abstract><pub>IEEE</pub><doi>10.1109/IFITA.2010.186</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424476216
ispartof 2010 International Forum on Information Technology and Applications, 2010, Vol.1, p.30-33
issn
language eng
recordid cdi_ieee_primary_5635035
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithm design and analysis
Biological cells
Chromosome retreading
Clustering
Clustering algorithms
Clustering methods
Convergence
Focusing operator
Migration strategy
Partitioning algorithms
Pseudo-parallel genetic Algorithm
title K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=K-means%20Multiple%20Clustering%20Research%20Based%20on%20Pseudo%20Parallel%20Genetic%20Algorithm&rft.btitle=2010%20International%20Forum%20on%20Information%20Technology%20and%20Applications&rft.au=Ge%20Xiufeng&rft.date=2010-07&rft.volume=1&rft.spage=30&rft.epage=33&rft.pages=30-33&rft.isbn=1424476216&rft.isbn_list=9781424476213&rft_id=info:doi/10.1109/IFITA.2010.186&rft_dat=%3Cieee_6IE%3E5635035%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424476220&rft.eisbn_list=1424476224&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5635035&rfr_iscdi=true