Automatic Facial Skin Defect Detection System

Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chuan-Yu Chang, Shang-Cheng Li, Pau-Choo Chung, Jui-Yi Kuo, Yung-Chin Tu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue
container_start_page 527
container_title
container_volume
creator Chuan-Yu Chang
Shang-Cheng Li
Pau-Choo Chung
Jui-Yi Kuo
Yung-Chin Tu
description Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.
doi_str_mv 10.1109/BWCCA.2010.126
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5633781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5633781</ieee_id><sourcerecordid>5633781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a16beaf870813d6f17aec190dae38f5fe32c4c9f2fff8097a83886115d3035d3</originalsourceid><addsrcrecordid>eNotjMtKA0EQRVskoHls3biZH5hY_Zh-LMfRqBBwkYDLUPZUQWsmkUy7yN_bopfLPdzNEeJGwlJKCHf3b13XLhX8fmUvxBScDY1R2sKlmEqjjPGlcCUW4_gBJaZRSodrUbff-ThgTrFaYUy4rzaf6VA9EFPMBbkgHQ_V5jxmGuZiwrgfafHPmdiuHrfdc71-fXrp2nWdAuTaoLTvhOwdeKl7y9IhRRmgR9KeGyatoomBFTN7CA699t5K2fQadJmZuP3TJiLafZ3SgKfzrrFauyL8Acb0QXk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Facial Skin Defect Detection System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</creator><creatorcontrib>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</creatorcontrib><description>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</description><identifier>ISBN: 1424484480</identifier><identifier>ISBN: 9781424484485</identifier><identifier>EISBN: 0769542360</identifier><identifier>EISBN: 9780769542362</identifier><identifier>DOI: 10.1109/BWCCA.2010.126</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Facial features ; facial skin defect detection ; Feature extraction ; Forehead ; Image color analysis ; Skin ; spot ; Transforms ; wrinkle</subject><ispartof>2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, p.527-532</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5633781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5633781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chuan-Yu Chang</creatorcontrib><creatorcontrib>Shang-Cheng Li</creatorcontrib><creatorcontrib>Pau-Choo Chung</creatorcontrib><creatorcontrib>Jui-Yi Kuo</creatorcontrib><creatorcontrib>Yung-Chin Tu</creatorcontrib><title>Automatic Facial Skin Defect Detection System</title><title>2010 International Conference on Broadband, Wireless Computing, Communication and Applications</title><addtitle>bwcca</addtitle><description>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</description><subject>Face</subject><subject>Facial features</subject><subject>facial skin defect detection</subject><subject>Feature extraction</subject><subject>Forehead</subject><subject>Image color analysis</subject><subject>Skin</subject><subject>spot</subject><subject>Transforms</subject><subject>wrinkle</subject><isbn>1424484480</isbn><isbn>9781424484485</isbn><isbn>0769542360</isbn><isbn>9780769542362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKA0EQRVskoHls3biZH5hY_Zh-LMfRqBBwkYDLUPZUQWsmkUy7yN_bopfLPdzNEeJGwlJKCHf3b13XLhX8fmUvxBScDY1R2sKlmEqjjPGlcCUW4_gBJaZRSodrUbff-ThgTrFaYUy4rzaf6VA9EFPMBbkgHQ_V5jxmGuZiwrgfafHPmdiuHrfdc71-fXrp2nWdAuTaoLTvhOwdeKl7y9IhRRmgR9KeGyatoomBFTN7CA699t5K2fQadJmZuP3TJiLafZ3SgKfzrrFauyL8Acb0QXk</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Chuan-Yu Chang</creator><creator>Shang-Cheng Li</creator><creator>Pau-Choo Chung</creator><creator>Jui-Yi Kuo</creator><creator>Yung-Chin Tu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Automatic Facial Skin Defect Detection System</title><author>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a16beaf870813d6f17aec190dae38f5fe32c4c9f2fff8097a83886115d3035d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Face</topic><topic>Facial features</topic><topic>facial skin defect detection</topic><topic>Feature extraction</topic><topic>Forehead</topic><topic>Image color analysis</topic><topic>Skin</topic><topic>spot</topic><topic>Transforms</topic><topic>wrinkle</topic><toplevel>online_resources</toplevel><creatorcontrib>Chuan-Yu Chang</creatorcontrib><creatorcontrib>Shang-Cheng Li</creatorcontrib><creatorcontrib>Pau-Choo Chung</creatorcontrib><creatorcontrib>Jui-Yi Kuo</creatorcontrib><creatorcontrib>Yung-Chin Tu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chuan-Yu Chang</au><au>Shang-Cheng Li</au><au>Pau-Choo Chung</au><au>Jui-Yi Kuo</au><au>Yung-Chin Tu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Facial Skin Defect Detection System</atitle><btitle>2010 International Conference on Broadband, Wireless Computing, Communication and Applications</btitle><stitle>bwcca</stitle><date>2010-11</date><risdate>2010</risdate><spage>527</spage><epage>532</epage><pages>527-532</pages><isbn>1424484480</isbn><isbn>9781424484485</isbn><eisbn>0769542360</eisbn><eisbn>9780769542362</eisbn><abstract>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/BWCCA.2010.126</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424484480
ispartof 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, p.527-532
issn
language eng
recordid cdi_ieee_primary_5633781
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face
Facial features
facial skin defect detection
Feature extraction
Forehead
Image color analysis
Skin
spot
Transforms
wrinkle
title Automatic Facial Skin Defect Detection System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Facial%20Skin%20Defect%20Detection%20System&rft.btitle=2010%20International%20Conference%20on%20Broadband,%20Wireless%20Computing,%20Communication%20and%20Applications&rft.au=Chuan-Yu%20Chang&rft.date=2010-11&rft.spage=527&rft.epage=532&rft.pages=527-532&rft.isbn=1424484480&rft.isbn_list=9781424484485&rft_id=info:doi/10.1109/BWCCA.2010.126&rft_dat=%3Cieee_6IE%3E5633781%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769542360&rft.eisbn_list=9780769542362&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5633781&rfr_iscdi=true