Automatic Facial Skin Defect Detection System
Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | |
container_start_page | 527 |
container_title | |
container_volume | |
creator | Chuan-Yu Chang Shang-Cheng Li Pau-Choo Chung Jui-Yi Kuo Yung-Chin Tu |
description | Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach. |
doi_str_mv | 10.1109/BWCCA.2010.126 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5633781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5633781</ieee_id><sourcerecordid>5633781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a16beaf870813d6f17aec190dae38f5fe32c4c9f2fff8097a83886115d3035d3</originalsourceid><addsrcrecordid>eNotjMtKA0EQRVskoHls3biZH5hY_Zh-LMfRqBBwkYDLUPZUQWsmkUy7yN_bopfLPdzNEeJGwlJKCHf3b13XLhX8fmUvxBScDY1R2sKlmEqjjPGlcCUW4_gBJaZRSodrUbff-ThgTrFaYUy4rzaf6VA9EFPMBbkgHQ_V5jxmGuZiwrgfafHPmdiuHrfdc71-fXrp2nWdAuTaoLTvhOwdeKl7y9IhRRmgR9KeGyatoomBFTN7CA699t5K2fQadJmZuP3TJiLafZ3SgKfzrrFauyL8Acb0QXk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Facial Skin Defect Detection System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</creator><creatorcontrib>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</creatorcontrib><description>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</description><identifier>ISBN: 1424484480</identifier><identifier>ISBN: 9781424484485</identifier><identifier>EISBN: 0769542360</identifier><identifier>EISBN: 9780769542362</identifier><identifier>DOI: 10.1109/BWCCA.2010.126</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Facial features ; facial skin defect detection ; Feature extraction ; Forehead ; Image color analysis ; Skin ; spot ; Transforms ; wrinkle</subject><ispartof>2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, p.527-532</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5633781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5633781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chuan-Yu Chang</creatorcontrib><creatorcontrib>Shang-Cheng Li</creatorcontrib><creatorcontrib>Pau-Choo Chung</creatorcontrib><creatorcontrib>Jui-Yi Kuo</creatorcontrib><creatorcontrib>Yung-Chin Tu</creatorcontrib><title>Automatic Facial Skin Defect Detection System</title><title>2010 International Conference on Broadband, Wireless Computing, Communication and Applications</title><addtitle>bwcca</addtitle><description>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</description><subject>Face</subject><subject>Facial features</subject><subject>facial skin defect detection</subject><subject>Feature extraction</subject><subject>Forehead</subject><subject>Image color analysis</subject><subject>Skin</subject><subject>spot</subject><subject>Transforms</subject><subject>wrinkle</subject><isbn>1424484480</isbn><isbn>9781424484485</isbn><isbn>0769542360</isbn><isbn>9780769542362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKA0EQRVskoHls3biZH5hY_Zh-LMfRqBBwkYDLUPZUQWsmkUy7yN_bopfLPdzNEeJGwlJKCHf3b13XLhX8fmUvxBScDY1R2sKlmEqjjPGlcCUW4_gBJaZRSodrUbff-ThgTrFaYUy4rzaf6VA9EFPMBbkgHQ_V5jxmGuZiwrgfafHPmdiuHrfdc71-fXrp2nWdAuTaoLTvhOwdeKl7y9IhRRmgR9KeGyatoomBFTN7CA699t5K2fQadJmZuP3TJiLafZ3SgKfzrrFauyL8Acb0QXk</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Chuan-Yu Chang</creator><creator>Shang-Cheng Li</creator><creator>Pau-Choo Chung</creator><creator>Jui-Yi Kuo</creator><creator>Yung-Chin Tu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Automatic Facial Skin Defect Detection System</title><author>Chuan-Yu Chang ; Shang-Cheng Li ; Pau-Choo Chung ; Jui-Yi Kuo ; Yung-Chin Tu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a16beaf870813d6f17aec190dae38f5fe32c4c9f2fff8097a83886115d3035d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Face</topic><topic>Facial features</topic><topic>facial skin defect detection</topic><topic>Feature extraction</topic><topic>Forehead</topic><topic>Image color analysis</topic><topic>Skin</topic><topic>spot</topic><topic>Transforms</topic><topic>wrinkle</topic><toplevel>online_resources</toplevel><creatorcontrib>Chuan-Yu Chang</creatorcontrib><creatorcontrib>Shang-Cheng Li</creatorcontrib><creatorcontrib>Pau-Choo Chung</creatorcontrib><creatorcontrib>Jui-Yi Kuo</creatorcontrib><creatorcontrib>Yung-Chin Tu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chuan-Yu Chang</au><au>Shang-Cheng Li</au><au>Pau-Choo Chung</au><au>Jui-Yi Kuo</au><au>Yung-Chin Tu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Facial Skin Defect Detection System</atitle><btitle>2010 International Conference on Broadband, Wireless Computing, Communication and Applications</btitle><stitle>bwcca</stitle><date>2010-11</date><risdate>2010</risdate><spage>527</spage><epage>532</epage><pages>527-532</pages><isbn>1424484480</isbn><isbn>9781424484485</isbn><eisbn>0769542360</eisbn><eisbn>9780769542362</eisbn><abstract>Skin analysis is one of the most important procedures before medical cosmetology. Most conventional skin analysis systems are semi-automatic. They often require human intervention. In this study, an automatic facial skin defect detection approach is proposed. The system first detects human face in the facial image. Based on the detected face, facial features are extracted to locate regions of interest. Then, a pattern recognition approach is applied to detect facial skin defects, such as spots and wrinkles, in the regions of interest. For a specific kind of defect, a classifier is designed to provide higher performance for recognition. Using few features extracted from the region of interest, the proposed approach can successfully detect the skin defects. Experimental results demonstrate effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/BWCCA.2010.126</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424484480 |
ispartof | 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, p.527-532 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5633781 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Face Facial features facial skin defect detection Feature extraction Forehead Image color analysis Skin spot Transforms wrinkle |
title | Automatic Facial Skin Defect Detection System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Facial%20Skin%20Defect%20Detection%20System&rft.btitle=2010%20International%20Conference%20on%20Broadband,%20Wireless%20Computing,%20Communication%20and%20Applications&rft.au=Chuan-Yu%20Chang&rft.date=2010-11&rft.spage=527&rft.epage=532&rft.pages=527-532&rft.isbn=1424484480&rft.isbn_list=9781424484485&rft_id=info:doi/10.1109/BWCCA.2010.126&rft_dat=%3Cieee_6IE%3E5633781%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769542360&rft.eisbn_list=9780769542362&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5633781&rfr_iscdi=true |