Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation

This paper briefly analyses the conventional reactive power optimization compensation. The new method proposes a new optimization reactive power compensation for electrical network that uses neural network to predict electric network's important parameters and nonlinear prime-dual interior algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu Fang, An Luo, Xianyong Xu, Houhui Fang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3901
container_issue
container_start_page 3898
container_title
container_volume
creator Lu Fang
An Luo
Xianyong Xu
Houhui Fang
description This paper briefly analyses the conventional reactive power optimization compensation. The new method proposes a new optimization reactive power compensation for electrical network that uses neural network to predict electric network's important parameters and nonlinear prime-dual interior algorithm to optimize reactive power. This intelligent control system diminishes power losses, and settles the problems that the electric power has complicated parameters and it is hard to constitute the compensation system model. The result shows that the effect of this intelligent control system is good and this algorithm is valid.
doi_str_mv 10.1109/iCECE.2010.951
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5629541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5629541</ieee_id><sourcerecordid>5629541</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ecc2e3734efaffc3442075915843ec55c6eaea3a8c0f51385a59511fcbb682143</originalsourceid><addsrcrecordid>eNo1j8tOwzAURI0QElCyZcPGP5DiZ2IvqxBKpSqtUPeVa66LIYkrx6WCryfiMZvR0Yyu7iB0S8mUUqLvfVVX9ZSRkbWkZyjTpaKCCVEoRdk5uv4Hoi9RNgxvZJSQjFF9hfYNHKNpcQPpFOI7Nv0LbkLf-h5MxOvoO8gfjmNh0SeIPkQ8a_ch-vTaYTfS6pB8579M8qHHz2Bs8h-A1-EEEVehO0A__GQ36MKZdoDszydo81hvqqd8uZovqtky95qkHKxlwEsuwBnnLBeCkVJqKpXgYKW0BRgw3ChLnKRcSSPHydTZ3a5QjAo-QXe_Zz0AbA_j-yZ-bmXBtBSUfwODJliN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lu Fang ; An Luo ; Xianyong Xu ; Houhui Fang</creator><creatorcontrib>Lu Fang ; An Luo ; Xianyong Xu ; Houhui Fang</creatorcontrib><description>This paper briefly analyses the conventional reactive power optimization compensation. The new method proposes a new optimization reactive power compensation for electrical network that uses neural network to predict electric network's important parameters and nonlinear prime-dual interior algorithm to optimize reactive power. This intelligent control system diminishes power losses, and settles the problems that the electric power has complicated parameters and it is hard to constitute the compensation system model. The result shows that the effect of this intelligent control system is good and this algorithm is valid.</description><identifier>ISBN: 1424468809</identifier><identifier>ISBN: 9781424468805</identifier><identifier>EISBN: 9781424468812</identifier><identifier>EISBN: 0769540317</identifier><identifier>EISBN: 9780769540313</identifier><identifier>EISBN: 1424468817</identifier><identifier>DOI: 10.1109/iCECE.2010.951</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Mathematical model ; neural network ; Neurons ; nonlinear prime-dual interior algorithm ; Optimization ; Prediction algorithms ; Reactive power ; reactive power optimization compensation ; static var compensator</subject><ispartof>2010 International Conference on Electrical and Control Engineering, 2010, p.3898-3901</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5629541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5629541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu Fang</creatorcontrib><creatorcontrib>An Luo</creatorcontrib><creatorcontrib>Xianyong Xu</creatorcontrib><creatorcontrib>Houhui Fang</creatorcontrib><title>Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation</title><title>2010 International Conference on Electrical and Control Engineering</title><addtitle>ICECE</addtitle><description>This paper briefly analyses the conventional reactive power optimization compensation. The new method proposes a new optimization reactive power compensation for electrical network that uses neural network to predict electric network's important parameters and nonlinear prime-dual interior algorithm to optimize reactive power. This intelligent control system diminishes power losses, and settles the problems that the electric power has complicated parameters and it is hard to constitute the compensation system model. The result shows that the effect of this intelligent control system is good and this algorithm is valid.</description><subject>Artificial neural networks</subject><subject>Mathematical model</subject><subject>neural network</subject><subject>Neurons</subject><subject>nonlinear prime-dual interior algorithm</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Reactive power</subject><subject>reactive power optimization compensation</subject><subject>static var compensator</subject><isbn>1424468809</isbn><isbn>9781424468805</isbn><isbn>9781424468812</isbn><isbn>0769540317</isbn><isbn>9780769540313</isbn><isbn>1424468817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tOwzAURI0QElCyZcPGP5DiZ2IvqxBKpSqtUPeVa66LIYkrx6WCryfiMZvR0Yyu7iB0S8mUUqLvfVVX9ZSRkbWkZyjTpaKCCVEoRdk5uv4Hoi9RNgxvZJSQjFF9hfYNHKNpcQPpFOI7Nv0LbkLf-h5MxOvoO8gfjmNh0SeIPkQ8a_ch-vTaYTfS6pB8579M8qHHz2Bs8h-A1-EEEVehO0A__GQ36MKZdoDszydo81hvqqd8uZovqtky95qkHKxlwEsuwBnnLBeCkVJqKpXgYKW0BRgw3ChLnKRcSSPHydTZ3a5QjAo-QXe_Zz0AbA_j-yZ-bmXBtBSUfwODJliN</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Lu Fang</creator><creator>An Luo</creator><creator>Xianyong Xu</creator><creator>Houhui Fang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation</title><author>Lu Fang ; An Luo ; Xianyong Xu ; Houhui Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ecc2e3734efaffc3442075915843ec55c6eaea3a8c0f51385a59511fcbb682143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Mathematical model</topic><topic>neural network</topic><topic>Neurons</topic><topic>nonlinear prime-dual interior algorithm</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Reactive power</topic><topic>reactive power optimization compensation</topic><topic>static var compensator</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu Fang</creatorcontrib><creatorcontrib>An Luo</creatorcontrib><creatorcontrib>Xianyong Xu</creatorcontrib><creatorcontrib>Houhui Fang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu Fang</au><au>An Luo</au><au>Xianyong Xu</au><au>Houhui Fang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation</atitle><btitle>2010 International Conference on Electrical and Control Engineering</btitle><stitle>ICECE</stitle><date>2010-06</date><risdate>2010</risdate><spage>3898</spage><epage>3901</epage><pages>3898-3901</pages><isbn>1424468809</isbn><isbn>9781424468805</isbn><eisbn>9781424468812</eisbn><eisbn>0769540317</eisbn><eisbn>9780769540313</eisbn><eisbn>1424468817</eisbn><abstract>This paper briefly analyses the conventional reactive power optimization compensation. The new method proposes a new optimization reactive power compensation for electrical network that uses neural network to predict electric network's important parameters and nonlinear prime-dual interior algorithm to optimize reactive power. This intelligent control system diminishes power losses, and settles the problems that the electric power has complicated parameters and it is hard to constitute the compensation system model. The result shows that the effect of this intelligent control system is good and this algorithm is valid.</abstract><pub>IEEE</pub><doi>10.1109/iCECE.2010.951</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424468809
ispartof 2010 International Conference on Electrical and Control Engineering, 2010, p.3898-3901
issn
language eng
recordid cdi_ieee_primary_5629541
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Mathematical model
neural network
Neurons
nonlinear prime-dual interior algorithm
Optimization
Prediction algorithms
Reactive power
reactive power optimization compensation
static var compensator
title Neural Network and Nonlinear Prime-Dual Interior Algorithm for Optimization Reactive Power Compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20Network%20and%20Nonlinear%20Prime-Dual%20Interior%20Algorithm%20for%20Optimization%20Reactive%20Power%20Compensation&rft.btitle=2010%20International%20Conference%20on%20Electrical%20and%20Control%20Engineering&rft.au=Lu%20Fang&rft.date=2010-06&rft.spage=3898&rft.epage=3901&rft.pages=3898-3901&rft.isbn=1424468809&rft.isbn_list=9781424468805&rft_id=info:doi/10.1109/iCECE.2010.951&rft_dat=%3Cieee_6IE%3E5629541%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424468812&rft.eisbn_list=0769540317&rft.eisbn_list=9780769540313&rft.eisbn_list=1424468817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5629541&rfr_iscdi=true