Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection
Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe c ) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.618-621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | |
container_start_page | 618 |
container_title | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
container_volume | 2010 |
creator | Nuryani, S L Nguyen, H T |
description | Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe c ) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support vector machine (FSVM) utilizing radial basis function (RBF) are used as the classification methods in this paper. By comparing with the classification systems using inputs of corrected QT interval (QT c ) and heart rate only, the results indicate that the inclusion of TpTec in combination with QTc and heart rate performs better in the detection of hypoglycaemia in terms of sensitivity, specificity and accuracy. |
doi_str_mv | 10.1109/IEMBS.2010.5627430 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5627430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5627430</ieee_id><sourcerecordid>21096769</sourcerecordid><originalsourceid>FETCH-LOGICAL-i414t-e5c1972c52a0a1d0cf85bb19fca9b80409b204bc6137ba286ad953eabdaf2c8d3</originalsourceid><addsrcrecordid>eNpFkNtKAzEYhOMJe9AXUJB9gdQkm2Q3l1qqFipeWMG78if5t41uu0t2rfTtXWjVq2H4hoEZQq44G3HOzO108nz_OhKs80qLTKbsiAy4FFJKLqQ4Jn2uVE6l5urkH6TytAPMSKrz7L1HBk3zwZhgTPFz0hMd0Zk2fTKblOjaWDmIPlTLCPUquGROv2GLSY3wSduK4sYnYdNi3EKZFFVMVru6WpY7B7gOkHhsu45QbS7IWQFlg5cHHZK3h8l8_ERnL4_T8d2MBsllS1E5bjLhlAAG3DNX5MpabgoHxuZMMmMFk9ZpnmYWRK7BG5UiWA-FcLlPh-Rm31t_2TX6RR3DGuJu8TurC1zvAwER__DhvvQHdoheag</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nuryani, S L ; Nguyen, H T</creator><creatorcontrib>Nuryani, S L ; Nguyen, H T</creatorcontrib><description>Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe c ) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support vector machine (FSVM) utilizing radial basis function (RBF) are used as the classification methods in this paper. By comparing with the classification systems using inputs of corrected QT interval (QT c ) and heart rate only, the results indicate that the inclusion of TpTec in combination with QTc and heart rate performs better in the detection of hypoglycaemia in terms of sensitivity, specificity and accuracy.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5627430</identifier><identifier>PMID: 21096769</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Classification algorithms ; Diabetes ; Diagnosis, Computer-Assisted - methods ; Electrocardiography - methods ; Heart rate ; Humans ; Hypoglycemia - diagnosis ; Kernel ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity ; Sensitivity and Specificity ; Support vector machines</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.618-621</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5627430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5627430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nuryani, S L</creatorcontrib><creatorcontrib>Nguyen, H T</creatorcontrib><title>Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe c ) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support vector machine (FSVM) utilizing radial basis function (RBF) are used as the classification methods in this paper. By comparing with the classification systems using inputs of corrected QT interval (QT c ) and heart rate only, the results indicate that the inclusion of TpTec in combination with QTc and heart rate performs better in the detection of hypoglycaemia in terms of sensitivity, specificity and accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification algorithms</subject><subject>Diabetes</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Electrocardiography - methods</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Hypoglycemia - diagnosis</subject><subject>Kernel</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Support vector machines</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkNtKAzEYhOMJe9AXUJB9gdQkm2Q3l1qqFipeWMG78if5t41uu0t2rfTtXWjVq2H4hoEZQq44G3HOzO108nz_OhKs80qLTKbsiAy4FFJKLqQ4Jn2uVE6l5urkH6TytAPMSKrz7L1HBk3zwZhgTPFz0hMd0Zk2fTKblOjaWDmIPlTLCPUquGROv2GLSY3wSduK4sYnYdNi3EKZFFVMVru6WpY7B7gOkHhsu45QbS7IWQFlg5cHHZK3h8l8_ERnL4_T8d2MBsllS1E5bjLhlAAG3DNX5MpabgoHxuZMMmMFk9ZpnmYWRK7BG5UiWA-FcLlPh-Rm31t_2TX6RR3DGuJu8TurC1zvAwER__DhvvQHdoheag</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nuryani, S L</creator><creator>Nguyen, H T</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection</title><author>Nuryani, S L ; Nguyen, H T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i414t-e5c1972c52a0a1d0cf85bb19fca9b80409b204bc6137ba286ad953eabdaf2c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification algorithms</topic><topic>Diabetes</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Electrocardiography - methods</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Hypoglycemia - diagnosis</topic><topic>Kernel</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Nuryani, S L</creatorcontrib><creatorcontrib>Nguyen, H T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nuryani, S L</au><au>Nguyen, H T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>618</spage><epage>621</epage><pages>618-621</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe c ) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support vector machine (FSVM) utilizing radial basis function (RBF) are used as the classification methods in this paper. By comparing with the classification systems using inputs of corrected QT interval (QT c ) and heart rate only, the results indicate that the inclusion of TpTec in combination with QTc and heart rate performs better in the detection of hypoglycaemia in terms of sensitivity, specificity and accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096769</pmid><doi>10.1109/IEMBS.2010.5627430</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.618-621 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5627430 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Algorithms Artificial Intelligence Classification algorithms Diabetes Diagnosis, Computer-Assisted - methods Electrocardiography - methods Heart rate Humans Hypoglycemia - diagnosis Kernel Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity Sensitivity and Specificity Support vector machines |
title | Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocardiographic%20T-wave%20peak-to-end%20interval%20for%20hypoglycaemia%20detection&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Nuryani,%20S%20L&rft.date=2010-01-01&rft.volume=2010&rft.spage=618&rft.epage=621&rft.pages=618-621&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5627430&rft_dat=%3Cpubmed_6IE%3E21096769%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096769&rft_ieee_id=5627430&rfr_iscdi=true |