Genetic algorithm and image processing for osteoporosis diagnosis
Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and os...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5600 |
---|---|
container_issue | |
container_start_page | 5597 |
container_title | |
container_volume | 2010 |
creator | Jennane, R Almhdie-Imjabber, A Hambli, R Ucan, O N Benhamou, C L |
description | Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations. |
doi_str_mv | 10.1109/IEMBS.2010.5626804 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626804</ieee_id><sourcerecordid>oai_HAL_hal_00658057v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h404t-3eb60481bad39e50c7f1dd429eb48e99ffd513e39c6f498cf5e12bfa0c39d7cd3</originalsourceid><addsrcrecordid>eNpFkMlOwzAQQM0musAPgIRy5ZDiZezYx1KVtlIRB0DiFjmxnRq1cRUHJP6eVC3lNMt7Gs0MQjcEjwjB6mExfX58HVHc1VxQITGcoAEBCgCEAj1FfcK5TEEQfvYPGJx3ACtIhcw-emgQ4yfGFGNOLlGPdkSAzPpoPLO1bX2Z6HUVGt-uNomuTeI3urLJtgmljdHXVeJCk4TY2rANTYg-Jsbrqt5lV-jC6XW014c4RO9P07fJPF2-zBaT8TJdAYY2ZbYQGCQptGHKclxmjhgDVNkCpFXKOcMJs0yVwoGSpeOW0MJpXDJlstKwIbrfz13pdb5tug2bnzxon8_Hy3zXw1hwiXn2TTr3bu9uv4qNNUf97-5OuN0L3lp7xIf_sl_2q2hG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</creator><creatorcontrib>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</creatorcontrib><description>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626804</identifier><identifier>PMID: 21096487</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Bone and Bones - pathology ; Bones ; Classification algorithms ; Computer Science ; Engineering Sciences ; Feature extraction ; Finite element methods ; Humans ; Image Interpretation, Computer-Assisted - methods ; Media ; Osteoarthritis - diagnosis ; Osteoarthritis - pathology ; Osteoporosis - diagnosis ; Osteoporosis - pathology ; Signal and Image processing ; Support vector machines</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, Vol.2010, p.5597-5600</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8032-8035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00658057$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennane, R</creatorcontrib><creatorcontrib>Almhdie-Imjabber, A</creatorcontrib><creatorcontrib>Hambli, R</creatorcontrib><creatorcontrib>Ucan, O N</creatorcontrib><creatorcontrib>Benhamou, C L</creatorcontrib><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bone and Bones - pathology</subject><subject>Bones</subject><subject>Classification algorithms</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Finite element methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Media</subject><subject>Osteoarthritis - diagnosis</subject><subject>Osteoarthritis - pathology</subject><subject>Osteoporosis - diagnosis</subject><subject>Osteoporosis - pathology</subject><subject>Signal and Image processing</subject><subject>Support vector machines</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkMlOwzAQQM0musAPgIRy5ZDiZezYx1KVtlIRB0DiFjmxnRq1cRUHJP6eVC3lNMt7Gs0MQjcEjwjB6mExfX58HVHc1VxQITGcoAEBCgCEAj1FfcK5TEEQfvYPGJx3ACtIhcw-emgQ4yfGFGNOLlGPdkSAzPpoPLO1bX2Z6HUVGt-uNomuTeI3urLJtgmljdHXVeJCk4TY2rANTYg-Jsbrqt5lV-jC6XW014c4RO9P07fJPF2-zBaT8TJdAYY2ZbYQGCQptGHKclxmjhgDVNkCpFXKOcMJs0yVwoGSpeOW0MJpXDJlstKwIbrfz13pdb5tug2bnzxon8_Hy3zXw1hwiXn2TTr3bu9uv4qNNUf97-5OuN0L3lp7xIf_sl_2q2hG</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Jennane, R</creator><creator>Almhdie-Imjabber, A</creator><creator>Hambli, R</creator><creator>Ucan, O N</creator><creator>Benhamou, C L</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid></search><sort><creationdate>20100101</creationdate><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><author>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h404t-3eb60481bad39e50c7f1dd429eb48e99ffd513e39c6f498cf5e12bfa0c39d7cd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bone and Bones - pathology</topic><topic>Bones</topic><topic>Classification algorithms</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Finite element methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Media</topic><topic>Osteoarthritis - diagnosis</topic><topic>Osteoarthritis - pathology</topic><topic>Osteoporosis - diagnosis</topic><topic>Osteoporosis - pathology</topic><topic>Signal and Image processing</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jennane, R</creatorcontrib><creatorcontrib>Almhdie-Imjabber, A</creatorcontrib><creatorcontrib>Hambli, R</creatorcontrib><creatorcontrib>Ucan, O N</creatorcontrib><creatorcontrib>Benhamou, C L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jennane, R</au><au>Almhdie-Imjabber, A</au><au>Hambli, R</au><au>Ucan, O N</au><au>Benhamou, C L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm and image processing for osteoporosis diagnosis</atitle><btitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5597</spage><epage>5600</epage><pages>5597-5600</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096487</pmid><doi>10.1109/IEMBS.2010.5626804</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, Vol.2010, p.5597-5600 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5626804 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Artificial Intelligence Bone and Bones - pathology Bones Classification algorithms Computer Science Engineering Sciences Feature extraction Finite element methods Humans Image Interpretation, Computer-Assisted - methods Media Osteoarthritis - diagnosis Osteoarthritis - pathology Osteoporosis - diagnosis Osteoporosis - pathology Signal and Image processing Support vector machines |
title | Genetic algorithm and image processing for osteoporosis diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20and%20image%20processing%20for%20osteoporosis%20diagnosis&rft.btitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Jennane,%20R&rft.date=2010-01-01&rft.volume=2010&rft.spage=5597&rft.epage=5600&rft.pages=5597-5600&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626804&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00658057v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096487&rft_ieee_id=5626804&rfr_iscdi=true |