Genetic algorithm and image processing for osteoporosis diagnosis

Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jennane, R, Almhdie-Imjabber, A, Hambli, R, Ucan, O N, Benhamou, C L
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5600
container_issue
container_start_page 5597
container_title
container_volume 2010
creator Jennane, R
Almhdie-Imjabber, A
Hambli, R
Ucan, O N
Benhamou, C L
description Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.
doi_str_mv 10.1109/IEMBS.2010.5626804
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626804</ieee_id><sourcerecordid>oai_HAL_hal_00658057v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h404t-3eb60481bad39e50c7f1dd429eb48e99ffd513e39c6f498cf5e12bfa0c39d7cd3</originalsourceid><addsrcrecordid>eNpFkMlOwzAQQM0musAPgIRy5ZDiZezYx1KVtlIRB0DiFjmxnRq1cRUHJP6eVC3lNMt7Gs0MQjcEjwjB6mExfX58HVHc1VxQITGcoAEBCgCEAj1FfcK5TEEQfvYPGJx3ACtIhcw-emgQ4yfGFGNOLlGPdkSAzPpoPLO1bX2Z6HUVGt-uNomuTeI3urLJtgmljdHXVeJCk4TY2rANTYg-Jsbrqt5lV-jC6XW014c4RO9P07fJPF2-zBaT8TJdAYY2ZbYQGCQptGHKclxmjhgDVNkCpFXKOcMJs0yVwoGSpeOW0MJpXDJlstKwIbrfz13pdb5tug2bnzxon8_Hy3zXw1hwiXn2TTr3bu9uv4qNNUf97-5OuN0L3lp7xIf_sl_2q2hG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</creator><creatorcontrib>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</creatorcontrib><description>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626804</identifier><identifier>PMID: 21096487</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Bone and Bones - pathology ; Bones ; Classification algorithms ; Computer Science ; Engineering Sciences ; Feature extraction ; Finite element methods ; Humans ; Image Interpretation, Computer-Assisted - methods ; Media ; Osteoarthritis - diagnosis ; Osteoarthritis - pathology ; Osteoporosis - diagnosis ; Osteoporosis - pathology ; Signal and Image processing ; Support vector machines</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, Vol.2010, p.5597-5600</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8032-8035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00658057$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennane, R</creatorcontrib><creatorcontrib>Almhdie-Imjabber, A</creatorcontrib><creatorcontrib>Hambli, R</creatorcontrib><creatorcontrib>Ucan, O N</creatorcontrib><creatorcontrib>Benhamou, C L</creatorcontrib><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bone and Bones - pathology</subject><subject>Bones</subject><subject>Classification algorithms</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Finite element methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Media</subject><subject>Osteoarthritis - diagnosis</subject><subject>Osteoarthritis - pathology</subject><subject>Osteoporosis - diagnosis</subject><subject>Osteoporosis - pathology</subject><subject>Signal and Image processing</subject><subject>Support vector machines</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkMlOwzAQQM0musAPgIRy5ZDiZezYx1KVtlIRB0DiFjmxnRq1cRUHJP6eVC3lNMt7Gs0MQjcEjwjB6mExfX58HVHc1VxQITGcoAEBCgCEAj1FfcK5TEEQfvYPGJx3ACtIhcw-emgQ4yfGFGNOLlGPdkSAzPpoPLO1bX2Z6HUVGt-uNomuTeI3urLJtgmljdHXVeJCk4TY2rANTYg-Jsbrqt5lV-jC6XW014c4RO9P07fJPF2-zBaT8TJdAYY2ZbYQGCQptGHKclxmjhgDVNkCpFXKOcMJs0yVwoGSpeOW0MJpXDJlstKwIbrfz13pdb5tug2bnzxon8_Hy3zXw1hwiXn2TTr3bu9uv4qNNUf97-5OuN0L3lp7xIf_sl_2q2hG</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Jennane, R</creator><creator>Almhdie-Imjabber, A</creator><creator>Hambli, R</creator><creator>Ucan, O N</creator><creator>Benhamou, C L</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid></search><sort><creationdate>20100101</creationdate><title>Genetic algorithm and image processing for osteoporosis diagnosis</title><author>Jennane, R ; Almhdie-Imjabber, A ; Hambli, R ; Ucan, O N ; Benhamou, C L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h404t-3eb60481bad39e50c7f1dd429eb48e99ffd513e39c6f498cf5e12bfa0c39d7cd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bone and Bones - pathology</topic><topic>Bones</topic><topic>Classification algorithms</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Finite element methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Media</topic><topic>Osteoarthritis - diagnosis</topic><topic>Osteoarthritis - pathology</topic><topic>Osteoporosis - diagnosis</topic><topic>Osteoporosis - pathology</topic><topic>Signal and Image processing</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jennane, R</creatorcontrib><creatorcontrib>Almhdie-Imjabber, A</creatorcontrib><creatorcontrib>Hambli, R</creatorcontrib><creatorcontrib>Ucan, O N</creatorcontrib><creatorcontrib>Benhamou, C L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jennane, R</au><au>Almhdie-Imjabber, A</au><au>Hambli, R</au><au>Ucan, O N</au><au>Benhamou, C L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm and image processing for osteoporosis diagnosis</atitle><btitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5597</spage><epage>5600</epage><pages>5597-5600</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Osteoporosis is considered as a major public health threat. It is characterized by a decrease in the density of bone, decreasing its strength and leading to an increased risk of fracture. In this work, the morphological, topological and mechanical characteristics of 2 populations of arthritic and osteoporotic trabecular bone samples are evaluated using artificial intelligence and recently developed skeletonization algorithms. Results show that genetic algorithms associated with image processing tools can precisely separate the 2 populations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096487</pmid><doi>10.1109/IEMBS.2010.5626804</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, Vol.2010, p.5597-5600
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626804
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Artificial Intelligence
Bone and Bones - pathology
Bones
Classification algorithms
Computer Science
Engineering Sciences
Feature extraction
Finite element methods
Humans
Image Interpretation, Computer-Assisted - methods
Media
Osteoarthritis - diagnosis
Osteoarthritis - pathology
Osteoporosis - diagnosis
Osteoporosis - pathology
Signal and Image processing
Support vector machines
title Genetic algorithm and image processing for osteoporosis diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20and%20image%20processing%20for%20osteoporosis%20diagnosis&rft.btitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Jennane,%20R&rft.date=2010-01-01&rft.volume=2010&rft.spage=5597&rft.epage=5600&rft.pages=5597-5600&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626804&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00658057v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096487&rft_ieee_id=5626804&rfr_iscdi=true