Finding stationary brain sources in EEG data

Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.2810-2813
Hauptverfasser: von Bünau, Paul, Meinecke, Frank C, Scholler, Simon, Müller, Klaus-Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2813
container_issue
container_start_page 2810
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume 2010
creator von Bünau, Paul
Meinecke, Frank C
Scholler, Simon
Müller, Klaus-Robert
description Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.
doi_str_mv 10.1109/IEMBS.2010.5626537
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626537</ieee_id><sourcerecordid>21096218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</originalsourceid><addsrcrecordid>eNpFkEtLA0EQhMcX5qF_QEH2B7ixe147e9SwiYGIBxW8hdmZXhkxm7CzOfjvHUjUU1XxFU3RjF0hTBChvFtUTw8vEw4pK821EsURG6HkUkrkkh-zISplcqlRnfwDIU8TgFLm2hTvAzaK8ROAAyg8ZwOeiOZohux2Flof2o8s9rYPm9Z231nd2dBmcbPrHMUs2aqaZ9729oKdNfYr0uVBx-xtVr1OH_Pl83wxvV_mTmLZ5wQlSuuw9k4JJE0cFSVrCoU1NM4ZQGFAkicpShJAZK1QTeOxsMCFGLOb_d3trl6TX227sE7DVr-zU-F6XwhE9IcP7xE_nKFQzQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding stationary brain sources in EEG data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</creator><creatorcontrib>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</creatorcontrib><description>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626537</identifier><identifier>PMID: 21096218</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - pathology ; Brain Mapping - methods ; Calibration ; Covariance matrix ; Electroencephalography ; Electroencephalography - methods ; Equipment Design ; Humans ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Motor Skills ; Multivariate Analysis ; Normal Distribution ; Optimization ; Presses ; Scalp ; Signal Processing, Computer-Assisted ; Time series analysis ; User-Computer Interface</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.2810-2813</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Bünau, Paul</creatorcontrib><creatorcontrib>Meinecke, Frank C</creatorcontrib><creatorcontrib>Scholler, Simon</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><title>Finding stationary brain sources in EEG data</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</description><subject>Algorithms</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Calibration</subject><subject>Covariance matrix</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Motor Skills</subject><subject>Multivariate Analysis</subject><subject>Normal Distribution</subject><subject>Optimization</subject><subject>Presses</subject><subject>Scalp</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time series analysis</subject><subject>User-Computer Interface</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkEtLA0EQhMcX5qF_QEH2B7ixe147e9SwiYGIBxW8hdmZXhkxm7CzOfjvHUjUU1XxFU3RjF0hTBChvFtUTw8vEw4pK821EsURG6HkUkrkkh-zISplcqlRnfwDIU8TgFLm2hTvAzaK8ROAAyg8ZwOeiOZohux2Flof2o8s9rYPm9Z231nd2dBmcbPrHMUs2aqaZ9729oKdNfYr0uVBx-xtVr1OH_Pl83wxvV_mTmLZ5wQlSuuw9k4JJE0cFSVrCoU1NM4ZQGFAkicpShJAZK1QTeOxsMCFGLOb_d3trl6TX227sE7DVr-zU-F6XwhE9IcP7xE_nKFQzQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>von Bünau, Paul</creator><creator>Meinecke, Frank C</creator><creator>Scholler, Simon</creator><creator>Müller, Klaus-Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Finding stationary brain sources in EEG data</title><author>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Calibration</topic><topic>Covariance matrix</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Motor Skills</topic><topic>Multivariate Analysis</topic><topic>Normal Distribution</topic><topic>Optimization</topic><topic>Presses</topic><topic>Scalp</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time series analysis</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>von Bünau, Paul</creatorcontrib><creatorcontrib>Meinecke, Frank C</creatorcontrib><creatorcontrib>Scholler, Simon</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>von Bünau, Paul</au><au>Meinecke, Frank C</au><au>Scholler, Simon</au><au>Müller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding stationary brain sources in EEG data</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>2810</spage><epage>2813</epage><pages>2810-2813</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096218</pmid><doi>10.1109/IEMBS.2010.5626537</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.2810-2813
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626537
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Brain - pathology
Brain Mapping - methods
Calibration
Covariance matrix
Electroencephalography
Electroencephalography - methods
Equipment Design
Humans
Magnetic Resonance Imaging - methods
Models, Statistical
Motor Skills
Multivariate Analysis
Normal Distribution
Optimization
Presses
Scalp
Signal Processing, Computer-Assisted
Time series analysis
User-Computer Interface
title Finding stationary brain sources in EEG data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20stationary%20brain%20sources%20in%20EEG%20data&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=von%20Bu%CC%88nau,%20Paul&rft.date=2010-01-01&rft.volume=2010&rft.spage=2810&rft.epage=2813&rft.pages=2810-2813&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626537&rft_dat=%3Cpubmed_6IE%3E21096218%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096218&rft_ieee_id=5626537&rfr_iscdi=true