Finding stationary brain sources in EEG data
Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters dete...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.2810-2813 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2813 |
---|---|
container_issue | |
container_start_page | 2810 |
container_title | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
container_volume | 2010 |
creator | von Bünau, Paul Meinecke, Frank C Scholler, Simon Müller, Klaus-Robert |
description | Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics. |
doi_str_mv | 10.1109/IEMBS.2010.5626537 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626537</ieee_id><sourcerecordid>21096218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</originalsourceid><addsrcrecordid>eNpFkEtLA0EQhMcX5qF_QEH2B7ixe147e9SwiYGIBxW8hdmZXhkxm7CzOfjvHUjUU1XxFU3RjF0hTBChvFtUTw8vEw4pK821EsURG6HkUkrkkh-zISplcqlRnfwDIU8TgFLm2hTvAzaK8ROAAyg8ZwOeiOZohux2Flof2o8s9rYPm9Z231nd2dBmcbPrHMUs2aqaZ9729oKdNfYr0uVBx-xtVr1OH_Pl83wxvV_mTmLZ5wQlSuuw9k4JJE0cFSVrCoU1NM4ZQGFAkicpShJAZK1QTeOxsMCFGLOb_d3trl6TX227sE7DVr-zU-F6XwhE9IcP7xE_nKFQzQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding stationary brain sources in EEG data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</creator><creatorcontrib>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</creatorcontrib><description>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626537</identifier><identifier>PMID: 21096218</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - pathology ; Brain Mapping - methods ; Calibration ; Covariance matrix ; Electroencephalography ; Electroencephalography - methods ; Equipment Design ; Humans ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Motor Skills ; Multivariate Analysis ; Normal Distribution ; Optimization ; Presses ; Scalp ; Signal Processing, Computer-Assisted ; Time series analysis ; User-Computer Interface</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.2810-2813</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Bünau, Paul</creatorcontrib><creatorcontrib>Meinecke, Frank C</creatorcontrib><creatorcontrib>Scholler, Simon</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><title>Finding stationary brain sources in EEG data</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</description><subject>Algorithms</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Calibration</subject><subject>Covariance matrix</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Motor Skills</subject><subject>Multivariate Analysis</subject><subject>Normal Distribution</subject><subject>Optimization</subject><subject>Presses</subject><subject>Scalp</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time series analysis</subject><subject>User-Computer Interface</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkEtLA0EQhMcX5qF_QEH2B7ixe147e9SwiYGIBxW8hdmZXhkxm7CzOfjvHUjUU1XxFU3RjF0hTBChvFtUTw8vEw4pK821EsURG6HkUkrkkh-zISplcqlRnfwDIU8TgFLm2hTvAzaK8ROAAyg8ZwOeiOZohux2Flof2o8s9rYPm9Z231nd2dBmcbPrHMUs2aqaZ9729oKdNfYr0uVBx-xtVr1OH_Pl83wxvV_mTmLZ5wQlSuuw9k4JJE0cFSVrCoU1NM4ZQGFAkicpShJAZK1QTeOxsMCFGLOb_d3trl6TX227sE7DVr-zU-F6XwhE9IcP7xE_nKFQzQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>von Bünau, Paul</creator><creator>Meinecke, Frank C</creator><creator>Scholler, Simon</creator><creator>Müller, Klaus-Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Finding stationary brain sources in EEG data</title><author>von Bünau, Paul ; Meinecke, Frank C ; Scholler, Simon ; Müller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e0914ac1bdc531e6e215ec538751b0fcc8013804ede439e30eeaa35ffd17a0233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Calibration</topic><topic>Covariance matrix</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Motor Skills</topic><topic>Multivariate Analysis</topic><topic>Normal Distribution</topic><topic>Optimization</topic><topic>Presses</topic><topic>Scalp</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time series analysis</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>von Bünau, Paul</creatorcontrib><creatorcontrib>Meinecke, Frank C</creatorcontrib><creatorcontrib>Scholler, Simon</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>von Bünau, Paul</au><au>Meinecke, Frank C</au><au>Scholler, Simon</au><au>Müller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding stationary brain sources in EEG data</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>2810</spage><epage>2813</epage><pages>2810-2813</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096218</pmid><doi>10.1109/IEMBS.2010.5626537</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.2810-2813 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5626537 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Brain - pathology Brain Mapping - methods Calibration Covariance matrix Electroencephalography Electroencephalography - methods Equipment Design Humans Magnetic Resonance Imaging - methods Models, Statistical Motor Skills Multivariate Analysis Normal Distribution Optimization Presses Scalp Signal Processing, Computer-Assisted Time series analysis User-Computer Interface |
title | Finding stationary brain sources in EEG data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20stationary%20brain%20sources%20in%20EEG%20data&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=von%20Bu%CC%88nau,%20Paul&rft.date=2010-01-01&rft.volume=2010&rft.spage=2810&rft.epage=2813&rft.pages=2810-2813&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626537&rft_dat=%3Cpubmed_6IE%3E21096218%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096218&rft_ieee_id=5626537&rfr_iscdi=true |