Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine

Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.5383-5386
Hauptverfasser: Bartels, G, Li-Chen Shi, Bao-Liang Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5386
container_issue
container_start_page 5383
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume 2010
creator Bartels, G
Li-Chen Shi
Bao-Liang Lu
description Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.
doi_str_mv 10.1109/IEMBS.2010.5626481
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626481</ieee_id><sourcerecordid>21096265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2f6A-8AEjIL5BiO3YSH6EKpVIRB0DiVq2djQhK6shJKvr2GLXAaTXzzc5hCLnibMY507fL_On-ZSZY0CoRicz4EZlwKaSUXEhxTMZcqSySCVcn_yCWpwEwLaMkS99HZNJ1n4wJxhQ_JyMRSOhSY7K7G3rXQF9ZCr6vSrA99di4LdS09K6heb6gEQXaVF9YUGhb78B-UANdkG5DCzeYGqmpq01BOzd4i7TDFnzoDBh-3KFtne_pFm3vPG3Cf7XBC3JWQt3h5eFOydtD_jp_jFbPi-X8bhVZyXUfFchLyIRIMOOi1KkwSiqrhTXSKNCaSQO8iFmiY2BCJzaVImaos1Tq4EM8JTf73nYwDRbr1lcN-N36d4MQuN4HKkT8w4et42-iYGx9</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</creator><creatorcontrib>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</creatorcontrib><description>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626481</identifier><identifier>PMID: 21096265</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithm design and analysis ; Algorithms ; Automation - methods ; Brain modeling ; Electroencephalography ; Electroencephalography - methods ; Electromyography ; Electrooculography ; Humans ; Male ; Movement - physiology ; Muscles ; Muscles - physiology ; Support vector machines ; Young Adult</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.5383-5386</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartels, G</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</description><subject>Adult</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automation - methods</subject><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Humans</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Muscles</subject><subject>Muscles - physiology</subject><subject>Support vector machines</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkM1OwzAQhM2f6A-8AEjIL5BiO3YSH6EKpVIRB0DiVq2djQhK6shJKvr2GLXAaTXzzc5hCLnibMY507fL_On-ZSZY0CoRicz4EZlwKaSUXEhxTMZcqSySCVcn_yCWpwEwLaMkS99HZNJ1n4wJxhQ_JyMRSOhSY7K7G3rXQF9ZCr6vSrA99di4LdS09K6heb6gEQXaVF9YUGhb78B-UANdkG5DCzeYGqmpq01BOzd4i7TDFnzoDBh-3KFtne_pFm3vPG3Cf7XBC3JWQt3h5eFOydtD_jp_jFbPi-X8bhVZyXUfFchLyIRIMOOi1KkwSiqrhTXSKNCaSQO8iFmiY2BCJzaVImaos1Tq4EM8JTf73nYwDRbr1lcN-N36d4MQuN4HKkT8w4et42-iYGx9</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Bartels, G</creator><creator>Li-Chen Shi</creator><creator>Bao-Liang Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><author>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automation - methods</topic><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Humans</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Muscles</topic><topic>Muscles - physiology</topic><topic>Support vector machines</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Bartels, G</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartels, G</au><au>Li-Chen Shi</au><au>Bao-Liang Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5383</spage><epage>5386</epage><pages>5383-5386</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096265</pmid><doi>10.1109/IEMBS.2010.5626481</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.5383-5386
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626481
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adult
Algorithm design and analysis
Algorithms
Automation - methods
Brain modeling
Electroencephalography
Electroencephalography - methods
Electromyography
Electrooculography
Humans
Male
Movement - physiology
Muscles
Muscles - physiology
Support vector machines
Young Adult
title Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20artifact%20removal%20from%20EEG%20-%20a%20mixed%20approach%20based%20on%20double%20blind%20source%20separation%20and%20support%20vector%20machine&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Bartels,%20G&rft.date=2010-01-01&rft.volume=2010&rft.spage=5383&rft.epage=5386&rft.pages=5383-5386&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626481&rft_dat=%3Cpubmed_6IE%3E21096265%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096265&rft_ieee_id=5626481&rfr_iscdi=true