Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine
Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts f...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.5383-5386 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5386 |
---|---|
container_issue | |
container_start_page | 5383 |
container_title | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
container_volume | 2010 |
creator | Bartels, G Li-Chen Shi Bao-Liang Lu |
description | Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated. |
doi_str_mv | 10.1109/IEMBS.2010.5626481 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626481</ieee_id><sourcerecordid>21096265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2f6A-8AEjIL5BiO3YSH6EKpVIRB0DiVq2djQhK6shJKvr2GLXAaTXzzc5hCLnibMY507fL_On-ZSZY0CoRicz4EZlwKaSUXEhxTMZcqSySCVcn_yCWpwEwLaMkS99HZNJ1n4wJxhQ_JyMRSOhSY7K7G3rXQF9ZCr6vSrA99di4LdS09K6heb6gEQXaVF9YUGhb78B-UANdkG5DCzeYGqmpq01BOzd4i7TDFnzoDBh-3KFtne_pFm3vPG3Cf7XBC3JWQt3h5eFOydtD_jp_jFbPi-X8bhVZyXUfFchLyIRIMOOi1KkwSiqrhTXSKNCaSQO8iFmiY2BCJzaVImaos1Tq4EM8JTf73nYwDRbr1lcN-N36d4MQuN4HKkT8w4et42-iYGx9</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</creator><creatorcontrib>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</creatorcontrib><description>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626481</identifier><identifier>PMID: 21096265</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithm design and analysis ; Algorithms ; Automation - methods ; Brain modeling ; Electroencephalography ; Electroencephalography - methods ; Electromyography ; Electrooculography ; Humans ; Male ; Movement - physiology ; Muscles ; Muscles - physiology ; Support vector machines ; Young Adult</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.5383-5386</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartels, G</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</description><subject>Adult</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automation - methods</subject><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Humans</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Muscles</subject><subject>Muscles - physiology</subject><subject>Support vector machines</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkM1OwzAQhM2f6A-8AEjIL5BiO3YSH6EKpVIRB0DiVq2djQhK6shJKvr2GLXAaTXzzc5hCLnibMY507fL_On-ZSZY0CoRicz4EZlwKaSUXEhxTMZcqSySCVcn_yCWpwEwLaMkS99HZNJ1n4wJxhQ_JyMRSOhSY7K7G3rXQF9ZCr6vSrA99di4LdS09K6heb6gEQXaVF9YUGhb78B-UANdkG5DCzeYGqmpq01BOzd4i7TDFnzoDBh-3KFtne_pFm3vPG3Cf7XBC3JWQt3h5eFOydtD_jp_jFbPi-X8bhVZyXUfFchLyIRIMOOi1KkwSiqrhTXSKNCaSQO8iFmiY2BCJzaVImaos1Tq4EM8JTf73nYwDRbr1lcN-N36d4MQuN4HKkT8w4et42-iYGx9</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Bartels, G</creator><creator>Li-Chen Shi</creator><creator>Bao-Liang Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</title><author>Bartels, G ; Li-Chen Shi ; Bao-Liang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-de1fa8226e812f972b545c92cb4b5a9904ba1d30693a0296c74230e987491d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automation - methods</topic><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Humans</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Muscles</topic><topic>Muscles - physiology</topic><topic>Support vector machines</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Bartels, G</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartels, G</au><au>Li-Chen Shi</au><au>Bao-Liang Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5383</spage><epage>5386</epage><pages>5383-5386</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Electroencephalography (EEG) recordings are often obscured by physiological artifacts that can render huge amounts of data useless and thus constitute a key challenge in current brain-computer interface research. This paper presents a new algorithm that automatically and reliably removes artifacts from EEG based on blind source separation and support vector machine. Performance on a motor imagery task is compared for artifact-contaminated and preprocessed signals to verify the accuracy of the proposed approach. The results showed improved results over all datasets. Furthermore, the online applicability of the algorithm is investigated.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096265</pmid><doi>10.1109/IEMBS.2010.5626481</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.5383-5386 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5626481 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adult Algorithm design and analysis Algorithms Automation - methods Brain modeling Electroencephalography Electroencephalography - methods Electromyography Electrooculography Humans Male Movement - physiology Muscles Muscles - physiology Support vector machines Young Adult |
title | Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20artifact%20removal%20from%20EEG%20-%20a%20mixed%20approach%20based%20on%20double%20blind%20source%20separation%20and%20support%20vector%20machine&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Bartels,%20G&rft.date=2010-01-01&rft.volume=2010&rft.spage=5383&rft.epage=5386&rft.pages=5383-5386&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626481&rft_dat=%3Cpubmed_6IE%3E21096265%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096265&rft_ieee_id=5626481&rfr_iscdi=true |