PDE-based reconstruction of the cerebral cortex from MR images
The topologically correct and geometrically accurate reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, e.g. in cortical thickness measurement studies. Limited resolution of MR images, noise, intensity...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4278-4283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4283 |
---|---|
container_issue | |
container_start_page | 4278 |
container_title | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
container_volume | 2010 |
creator | Osechinskiy, S Kruggel, F |
description | The topologically correct and geometrically accurate reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, e.g. in cortical thickness measurement studies. Limited resolution of MR images, noise, intensity inhomogeneities, and partial volume effects can all contribute to geometrical inaccuracies and topological errors in the model of cortical surfaces. For example, unresolved touching banks of gray matter (GM) in narrow sulci pose a particular challenge for an automated algorithm, requiring specific steps for the recovery of separating boundaries. We present a method for the automated reconstruction of the cortical compartment from MR images. The method is based on several partial differential equation (PDE) modelling stages. First, a potential field is computed in an electrostatic model with GM posing as an insulating dielectric layer surrounding a charged conductive white matter (WM) object. Second, geodesic distances from WM along the streamlines of the potential field are computed in a Eulerian framework PDE. Third, a digital skeleton surface separating GM sulcal banks is derived by finding shocks in the distance field. At the last stage, a geometric deformable model based on the level set PDE is used to reconstruct the outer cortical surface by advection along the gradient of the distance or potential field. The rule preserving the digital topology, and the skeleton of the distance field resolving fused adjacent banks in sulci, constrain the deformable model evolution. In addition, the deformable model may use the distance field as a constraint on thickness of the reconstructed cortical layer. |
doi_str_mv | 10.1109/IEMBS.2010.5626179 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626179</ieee_id><sourcerecordid>21095750</sourcerecordid><originalsourceid>FETCH-LOGICAL-i333t-232c9ae5c3a11b5b0d5a325620bd4156ddcc99d7b82743f4251c5bc2bed5aaf23</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhtcT9qAvoCD7Aqk7s7tJcyPUWrXQongA78oeJhppmrJJQd_ehVa9GobvY4b_Z-wMxABA5JfTyfz6eYAi7jrFFLJ8j_VAoVIKUOE-64LWw0SloA_-gVSHEYhcJekwe-uwXtN8CoFCaDhmHYxEZ1p02dXjzSSxpiHPA7l61bRh49qyXvG64O0HcUeBbDBL7urQ0hcvQl3x-RMvK_NOzQk7KsyyodPd7LPX28nL-D6ZPdxNx6NZUkop2wQlutyQdtIAWG2F10ZijCOsV6BT753Lc5_ZIWZKFgo1OG0dWoqiKVD22cX27npjK_KLdYj_w_fiN0gUzrdCSUR_eFeY_AGfHVet</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PDE-based reconstruction of the cerebral cortex from MR images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Osechinskiy, S ; Kruggel, F</creator><creatorcontrib>Osechinskiy, S ; Kruggel, F</creatorcontrib><description>The topologically correct and geometrically accurate reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, e.g. in cortical thickness measurement studies. Limited resolution of MR images, noise, intensity inhomogeneities, and partial volume effects can all contribute to geometrical inaccuracies and topological errors in the model of cortical surfaces. For example, unresolved touching banks of gray matter (GM) in narrow sulci pose a particular challenge for an automated algorithm, requiring specific steps for the recovery of separating boundaries. We present a method for the automated reconstruction of the cortical compartment from MR images. The method is based on several partial differential equation (PDE) modelling stages. First, a potential field is computed in an electrostatic model with GM posing as an insulating dielectric layer surrounding a charged conductive white matter (WM) object. Second, geodesic distances from WM along the streamlines of the potential field are computed in a Eulerian framework PDE. Third, a digital skeleton surface separating GM sulcal banks is derived by finding shocks in the distance field. At the last stage, a geometric deformable model based on the level set PDE is used to reconstruct the outer cortical surface by advection along the gradient of the distance or potential field. The rule preserving the digital topology, and the skeleton of the distance field resolving fused adjacent banks in sulci, constrain the deformable model evolution. In addition, the deformable model may use the distance field as a constraint on thickness of the reconstructed cortical layer.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626179</identifier><identifier>PMID: 21095750</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain modeling ; Cerebral Cortex - anatomy & histology ; Deformable models ; Humans ; Image reconstruction ; Level set ; Magnetic Resonance Imaging - methods ; Mathematical model ; Skeleton ; Static Electricity ; Surface reconstruction</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.4278-4283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21095750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osechinskiy, S</creatorcontrib><creatorcontrib>Kruggel, F</creatorcontrib><title>PDE-based reconstruction of the cerebral cortex from MR images</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The topologically correct and geometrically accurate reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, e.g. in cortical thickness measurement studies. Limited resolution of MR images, noise, intensity inhomogeneities, and partial volume effects can all contribute to geometrical inaccuracies and topological errors in the model of cortical surfaces. For example, unresolved touching banks of gray matter (GM) in narrow sulci pose a particular challenge for an automated algorithm, requiring specific steps for the recovery of separating boundaries. We present a method for the automated reconstruction of the cortical compartment from MR images. The method is based on several partial differential equation (PDE) modelling stages. First, a potential field is computed in an electrostatic model with GM posing as an insulating dielectric layer surrounding a charged conductive white matter (WM) object. Second, geodesic distances from WM along the streamlines of the potential field are computed in a Eulerian framework PDE. Third, a digital skeleton surface separating GM sulcal banks is derived by finding shocks in the distance field. At the last stage, a geometric deformable model based on the level set PDE is used to reconstruct the outer cortical surface by advection along the gradient of the distance or potential field. The rule preserving the digital topology, and the skeleton of the distance field resolving fused adjacent banks in sulci, constrain the deformable model evolution. In addition, the deformable model may use the distance field as a constraint on thickness of the reconstructed cortical layer.</description><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Deformable models</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Level set</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical model</subject><subject>Skeleton</subject><subject>Static Electricity</subject><subject>Surface reconstruction</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkNtKw0AQhtcT9qAvoCD7Aqk7s7tJcyPUWrXQongA78oeJhppmrJJQd_ehVa9GobvY4b_Z-wMxABA5JfTyfz6eYAi7jrFFLJ8j_VAoVIKUOE-64LWw0SloA_-gVSHEYhcJekwe-uwXtN8CoFCaDhmHYxEZ1p02dXjzSSxpiHPA7l61bRh49qyXvG64O0HcUeBbDBL7urQ0hcvQl3x-RMvK_NOzQk7KsyyodPd7LPX28nL-D6ZPdxNx6NZUkop2wQlutyQdtIAWG2F10ZijCOsV6BT753Lc5_ZIWZKFgo1OG0dWoqiKVD22cX27npjK_KLdYj_w_fiN0gUzrdCSUR_eFeY_AGfHVet</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Osechinskiy, S</creator><creator>Kruggel, F</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>PDE-based reconstruction of the cerebral cortex from MR images</title><author>Osechinskiy, S ; Kruggel, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i333t-232c9ae5c3a11b5b0d5a325620bd4156ddcc99d7b82743f4251c5bc2bed5aaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Deformable models</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Level set</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical model</topic><topic>Skeleton</topic><topic>Static Electricity</topic><topic>Surface reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Osechinskiy, S</creatorcontrib><creatorcontrib>Kruggel, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Osechinskiy, S</au><au>Kruggel, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDE-based reconstruction of the cerebral cortex from MR images</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>4278</spage><epage>4283</epage><pages>4278-4283</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>The topologically correct and geometrically accurate reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, e.g. in cortical thickness measurement studies. Limited resolution of MR images, noise, intensity inhomogeneities, and partial volume effects can all contribute to geometrical inaccuracies and topological errors in the model of cortical surfaces. For example, unresolved touching banks of gray matter (GM) in narrow sulci pose a particular challenge for an automated algorithm, requiring specific steps for the recovery of separating boundaries. We present a method for the automated reconstruction of the cortical compartment from MR images. The method is based on several partial differential equation (PDE) modelling stages. First, a potential field is computed in an electrostatic model with GM posing as an insulating dielectric layer surrounding a charged conductive white matter (WM) object. Second, geodesic distances from WM along the streamlines of the potential field are computed in a Eulerian framework PDE. Third, a digital skeleton surface separating GM sulcal banks is derived by finding shocks in the distance field. At the last stage, a geometric deformable model based on the level set PDE is used to reconstruct the outer cortical surface by advection along the gradient of the distance or potential field. The rule preserving the digital topology, and the skeleton of the distance field resolving fused adjacent banks in sulci, constrain the deformable model evolution. In addition, the deformable model may use the distance field as a constraint on thickness of the reconstructed cortical layer.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21095750</pmid><doi>10.1109/IEMBS.2010.5626179</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.4278-4283 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5626179 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Brain modeling Cerebral Cortex - anatomy & histology Deformable models Humans Image reconstruction Level set Magnetic Resonance Imaging - methods Mathematical model Skeleton Static Electricity Surface reconstruction |
title | PDE-based reconstruction of the cerebral cortex from MR images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDE-based%20reconstruction%20of%20the%20cerebral%20cortex%20from%20MR%20images&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Osechinskiy,%20S&rft.date=2010-01-01&rft.volume=2010&rft.spage=4278&rft.epage=4283&rft.pages=4278-4283&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626179&rft_dat=%3Cpubmed_6IE%3E21095750%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21095750&rft_ieee_id=5626179&rfr_iscdi=true |