Automated classification of renal cell carcinoma subtypes using bag-of-features

Color variation in medical images degrades the classification performance of computer aided diagnosis systems. Traditionally, color segmentation algorithms mitigate this variability and improve performance. However, consistent and robust segmentation remains an open research problem. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.6749-6752
Hauptverfasser: Raza, S H, Parry, R M, Sharma, Y, Chaudry, Q, Moffitt, R A, Young, A N, Wang, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6752
container_issue
container_start_page 6749
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume 2010
creator Raza, S H
Parry, R M
Sharma, Y
Chaudry, Q
Moffitt, R A
Young, A N
Wang, M D
description Color variation in medical images degrades the classification performance of computer aided diagnosis systems. Traditionally, color segmentation algorithms mitigate this variability and improve performance. However, consistent and robust segmentation remains an open research problem. In this study, we avoid the tenuous phase of color segmentation by adapting a bag-of-features approach using scale invariant features for classification of renal cell carcinoma subtypes. Previous work shows that features from each subtype match those from expertly chosen template images. In this paper, we show that the performance of this match-based methodology greatly depends on the quality of the template images. To avoid this uncertainty, we propose a bag-of-features approach that does not require expert knowledge and instead learns a "vocabulary" of morphological characteristics from training data. We build a support vector machine using feature histograms and evaluate this method using 40 iterations of 3-fold cross validation. We achieve classification accuracy above 90% for a heterogeneous dataset labeled by an expert pathologist, showing its potential for future clinical applications.
doi_str_mv 10.1109/IEMBS.2010.5626009
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626009</ieee_id><sourcerecordid>21095831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ef75ab1bdfb3494aec3cdcea68372c49e28a416494d724f2052d8de76713e83f3</originalsourceid><addsrcrecordid>eNpVkd1Kw0AQhdc_rK2-gILkBaL7m2xuhFqqFiq9UMG7MNnM1pU0KdlE6Nu70Fr1ZobhO-dcnCHkktEbxmh2O5s-37_ccBpulfCE0uyADJnkUkrGJT8kZ0wpHcuEqaNfIORxADSTcaLT9wEZev9JKadUsVMy4IEoLdgZWYz7rllBh2VkKvDeWWegc00dNTZqsYYqMliFAa1xdVBGvi-6zRp91HtXL6MClnFjY4vQ9S36c3JiofJ4sdsj8vYwfZ08xfPF42wynsdGMd3FaFMFBStKWwiZSUAjTGkQEi1SbmSGXINkSUBlyqXlVPFSl5gmKROohRUjcrfNXffFCoO17lqo8nXrVtBu8gZc_p_U7iNfNl-5zLQIBYWA678Be-dPNUFwtRU4RNzj3QvEN9FedkU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated classification of renal cell carcinoma subtypes using bag-of-features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raza, S H ; Parry, R M ; Sharma, Y ; Chaudry, Q ; Moffitt, R A ; Young, A N ; Wang, M D</creator><creatorcontrib>Raza, S H ; Parry, R M ; Sharma, Y ; Chaudry, Q ; Moffitt, R A ; Young, A N ; Wang, M D</creatorcontrib><description>Color variation in medical images degrades the classification performance of computer aided diagnosis systems. Traditionally, color segmentation algorithms mitigate this variability and improve performance. However, consistent and robust segmentation remains an open research problem. In this study, we avoid the tenuous phase of color segmentation by adapting a bag-of-features approach using scale invariant features for classification of renal cell carcinoma subtypes. Previous work shows that features from each subtype match those from expertly chosen template images. In this paper, we show that the performance of this match-based methodology greatly depends on the quality of the template images. To avoid this uncertainty, we propose a bag-of-features approach that does not require expert knowledge and instead learns a "vocabulary" of morphological characteristics from training data. We build a support vector machine using feature histograms and evaluate this method using 40 iterations of 3-fold cross validation. We achieve classification accuracy above 90% for a heterogeneous dataset labeled by an expert pathologist, showing its potential for future clinical applications.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626009</identifier><identifier>PMID: 21095831</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; bag-of-features ; Cancer ; Carcinoma, Renal Cell - diagnosis ; classification ; Design automation ; Diagnosis, Computer-Assisted - methods ; Feature extraction ; Humans ; Image color analysis ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Pattern Recognition, Automated - methods ; Renal cell carcinoma ; scale invariant features ; support vector machine ; Vocabulary</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.6749-6752</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ef75ab1bdfb3494aec3cdcea68372c49e28a416494d724f2052d8de76713e83f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,27904,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21095831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raza, S H</creatorcontrib><creatorcontrib>Parry, R M</creatorcontrib><creatorcontrib>Sharma, Y</creatorcontrib><creatorcontrib>Chaudry, Q</creatorcontrib><creatorcontrib>Moffitt, R A</creatorcontrib><creatorcontrib>Young, A N</creatorcontrib><creatorcontrib>Wang, M D</creatorcontrib><title>Automated classification of renal cell carcinoma subtypes using bag-of-features</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Color variation in medical images degrades the classification performance of computer aided diagnosis systems. Traditionally, color segmentation algorithms mitigate this variability and improve performance. However, consistent and robust segmentation remains an open research problem. In this study, we avoid the tenuous phase of color segmentation by adapting a bag-of-features approach using scale invariant features for classification of renal cell carcinoma subtypes. Previous work shows that features from each subtype match those from expertly chosen template images. In this paper, we show that the performance of this match-based methodology greatly depends on the quality of the template images. To avoid this uncertainty, we propose a bag-of-features approach that does not require expert knowledge and instead learns a "vocabulary" of morphological characteristics from training data. We build a support vector machine using feature histograms and evaluate this method using 40 iterations of 3-fold cross validation. We achieve classification accuracy above 90% for a heterogeneous dataset labeled by an expert pathologist, showing its potential for future clinical applications.</description><subject>Accuracy</subject><subject>bag-of-features</subject><subject>Cancer</subject><subject>Carcinoma, Renal Cell - diagnosis</subject><subject>classification</subject><subject>Design automation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Renal cell carcinoma</subject><subject>scale invariant features</subject><subject>support vector machine</subject><subject>Vocabulary</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkd1Kw0AQhdc_rK2-gILkBaL7m2xuhFqqFiq9UMG7MNnM1pU0KdlE6Nu70Fr1ZobhO-dcnCHkktEbxmh2O5s-37_ccBpulfCE0uyADJnkUkrGJT8kZ0wpHcuEqaNfIORxADSTcaLT9wEZev9JKadUsVMy4IEoLdgZWYz7rllBh2VkKvDeWWegc00dNTZqsYYqMliFAa1xdVBGvi-6zRp91HtXL6MClnFjY4vQ9S36c3JiofJ4sdsj8vYwfZ08xfPF42wynsdGMd3FaFMFBStKWwiZSUAjTGkQEi1SbmSGXINkSUBlyqXlVPFSl5gmKROohRUjcrfNXffFCoO17lqo8nXrVtBu8gZc_p_U7iNfNl-5zLQIBYWA678Be-dPNUFwtRU4RNzj3QvEN9FedkU</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Raza, S H</creator><creator>Parry, R M</creator><creator>Sharma, Y</creator><creator>Chaudry, Q</creator><creator>Moffitt, R A</creator><creator>Young, A N</creator><creator>Wang, M D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Automated classification of renal cell carcinoma subtypes using bag-of-features</title><author>Raza, S H ; Parry, R M ; Sharma, Y ; Chaudry, Q ; Moffitt, R A ; Young, A N ; Wang, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ef75ab1bdfb3494aec3cdcea68372c49e28a416494d724f2052d8de76713e83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>bag-of-features</topic><topic>Cancer</topic><topic>Carcinoma, Renal Cell - diagnosis</topic><topic>classification</topic><topic>Design automation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Renal cell carcinoma</topic><topic>scale invariant features</topic><topic>support vector machine</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Raza, S H</creatorcontrib><creatorcontrib>Parry, R M</creatorcontrib><creatorcontrib>Sharma, Y</creatorcontrib><creatorcontrib>Chaudry, Q</creatorcontrib><creatorcontrib>Moffitt, R A</creatorcontrib><creatorcontrib>Young, A N</creatorcontrib><creatorcontrib>Wang, M D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raza, S H</au><au>Parry, R M</au><au>Sharma, Y</au><au>Chaudry, Q</au><au>Moffitt, R A</au><au>Young, A N</au><au>Wang, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of renal cell carcinoma subtypes using bag-of-features</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>6749</spage><epage>6752</epage><pages>6749-6752</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Color variation in medical images degrades the classification performance of computer aided diagnosis systems. Traditionally, color segmentation algorithms mitigate this variability and improve performance. However, consistent and robust segmentation remains an open research problem. In this study, we avoid the tenuous phase of color segmentation by adapting a bag-of-features approach using scale invariant features for classification of renal cell carcinoma subtypes. Previous work shows that features from each subtype match those from expertly chosen template images. In this paper, we show that the performance of this match-based methodology greatly depends on the quality of the template images. To avoid this uncertainty, we propose a bag-of-features approach that does not require expert knowledge and instead learns a "vocabulary" of morphological characteristics from training data. We build a support vector machine using feature histograms and evaluate this method using 40 iterations of 3-fold cross validation. We achieve classification accuracy above 90% for a heterogeneous dataset labeled by an expert pathologist, showing its potential for future clinical applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21095831</pmid><doi>10.1109/IEMBS.2010.5626009</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.6749-6752
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626009
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
bag-of-features
Cancer
Carcinoma, Renal Cell - diagnosis
classification
Design automation
Diagnosis, Computer-Assisted - methods
Feature extraction
Humans
Image color analysis
Image Interpretation, Computer-Assisted - methods
Image segmentation
Pattern Recognition, Automated - methods
Renal cell carcinoma
scale invariant features
support vector machine
Vocabulary
title Automated classification of renal cell carcinoma subtypes using bag-of-features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20renal%20cell%20carcinoma%20subtypes%20using%20bag-of-features&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Raza,%20S%20H&rft.date=2010-01-01&rft.volume=2010&rft.spage=6749&rft.epage=6752&rft.pages=6749-6752&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626009&rft_dat=%3Cpubmed_6IE%3E21095831%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21095831&rft_ieee_id=5626009&rfr_iscdi=true