Modeling microphone in PSpice based on Neural Network
Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V13-32 |
---|---|
container_issue | |
container_start_page | V13-28 |
container_title | |
container_volume | 13 |
creator | Li Hua Xiang Lian Ming Wang An Ning Yu |
description | Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model. |
doi_str_mv | 10.1109/ICCASM.2010.5622642 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622642</ieee_id><sourcerecordid>5622642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fb6e30da93e72c651babb3d0100316ff6901b8d5a85a2e749aefc6792e264bb33</originalsourceid><addsrcrecordid>eNpVT81KAzEYjKhgqfsEveQFtiZf_jbHsvhTaFVo7yXZ_aLR7WbZrYhvb8BenMswwzDMELLgbMk5s3frul7ttktg2VAaQEu4IIU1FZcgpQFh9OU_reCKzIBrXlqm7Q0ppumDZUgFANWMqG1qsYv9Gz3GZkzDe-qRxp6-7obYIPVuwpamnj7j1-i6TKfvNH7ekuvgugmLM8_J_uF-Xz-Vm5fHdb3alNGyUxm8RsFaZwUaaLTi3nkv2rydCa5D0JZxX7XKVcoBGmkdhkYbC5h_5aSYk8VfbUTEwzDGoxt_Duff4hfYdUjf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling microphone in PSpice based on Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</creator><creatorcontrib>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</creatorcontrib><description>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622642</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Electronic countermeasures ; Frequency response ; Integrated circuit modeling ; Microphone ; Microphones ; Neural Network ; PSpice ; SPICE</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.13, p.V13-28-V13-32</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Hua Xiang</creatorcontrib><creatorcontrib>Lian Ming Wang</creatorcontrib><creatorcontrib>An Ning Yu</creatorcontrib><title>Modeling microphone in PSpice based on Neural Network</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Electronic countermeasures</subject><subject>Frequency response</subject><subject>Integrated circuit modeling</subject><subject>Microphone</subject><subject>Microphones</subject><subject>Neural Network</subject><subject>PSpice</subject><subject>SPICE</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT81KAzEYjKhgqfsEveQFtiZf_jbHsvhTaFVo7yXZ_aLR7WbZrYhvb8BenMswwzDMELLgbMk5s3frul7ttktg2VAaQEu4IIU1FZcgpQFh9OU_reCKzIBrXlqm7Q0ppumDZUgFANWMqG1qsYv9Gz3GZkzDe-qRxp6-7obYIPVuwpamnj7j1-i6TKfvNH7ekuvgugmLM8_J_uF-Xz-Vm5fHdb3alNGyUxm8RsFaZwUaaLTi3nkv2rydCa5D0JZxX7XKVcoBGmkdhkYbC5h_5aSYk8VfbUTEwzDGoxt_Duff4hfYdUjf</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Li Hua Xiang</creator><creator>Lian Ming Wang</creator><creator>An Ning Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Modeling microphone in PSpice based on Neural Network</title><author>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fb6e30da93e72c651babb3d0100316ff6901b8d5a85a2e749aefc6792e264bb33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Electronic countermeasures</topic><topic>Frequency response</topic><topic>Integrated circuit modeling</topic><topic>Microphone</topic><topic>Microphones</topic><topic>Neural Network</topic><topic>PSpice</topic><topic>SPICE</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Hua Xiang</creatorcontrib><creatorcontrib>Lian Ming Wang</creatorcontrib><creatorcontrib>An Ning Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Hua Xiang</au><au>Lian Ming Wang</au><au>An Ning Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling microphone in PSpice based on Neural Network</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>13</volume><spage>V13-28</spage><epage>V13-32</epage><pages>V13-28-V13-32</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622642</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-9069 |
ispartof | 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.13, p.V13-28-V13-32 |
issn | 2161-9069 |
language | eng |
recordid | cdi_ieee_primary_5622642 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Computational modeling Electronic countermeasures Frequency response Integrated circuit modeling Microphone Microphones Neural Network PSpice SPICE |
title | Modeling microphone in PSpice based on Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20microphone%20in%20PSpice%20based%20on%20Neural%20Network&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Li%20Hua%20Xiang&rft.date=2010-10&rft.volume=13&rft.spage=V13-28&rft.epage=V13-32&rft.pages=V13-28-V13-32&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622642&rft_dat=%3Cieee_6IE%3E5622642%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622642&rfr_iscdi=true |