Modeling microphone in PSpice based on Neural Network

Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Hua Xiang, Lian Ming Wang, An Ning Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V13-32
container_issue
container_start_page V13-28
container_title
container_volume 13
creator Li Hua Xiang
Lian Ming Wang
An Ning Yu
description Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.
doi_str_mv 10.1109/ICCASM.2010.5622642
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622642</ieee_id><sourcerecordid>5622642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fb6e30da93e72c651babb3d0100316ff6901b8d5a85a2e749aefc6792e264bb33</originalsourceid><addsrcrecordid>eNpVT81KAzEYjKhgqfsEveQFtiZf_jbHsvhTaFVo7yXZ_aLR7WbZrYhvb8BenMswwzDMELLgbMk5s3frul7ttktg2VAaQEu4IIU1FZcgpQFh9OU_reCKzIBrXlqm7Q0ppumDZUgFANWMqG1qsYv9Gz3GZkzDe-qRxp6-7obYIPVuwpamnj7j1-i6TKfvNH7ekuvgugmLM8_J_uF-Xz-Vm5fHdb3alNGyUxm8RsFaZwUaaLTi3nkv2rydCa5D0JZxX7XKVcoBGmkdhkYbC5h_5aSYk8VfbUTEwzDGoxt_Duff4hfYdUjf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling microphone in PSpice based on Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</creator><creatorcontrib>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</creatorcontrib><description>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622642</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Electronic countermeasures ; Frequency response ; Integrated circuit modeling ; Microphone ; Microphones ; Neural Network ; PSpice ; SPICE</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.13, p.V13-28-V13-32</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Hua Xiang</creatorcontrib><creatorcontrib>Lian Ming Wang</creatorcontrib><creatorcontrib>An Ning Yu</creatorcontrib><title>Modeling microphone in PSpice based on Neural Network</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Electronic countermeasures</subject><subject>Frequency response</subject><subject>Integrated circuit modeling</subject><subject>Microphone</subject><subject>Microphones</subject><subject>Neural Network</subject><subject>PSpice</subject><subject>SPICE</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT81KAzEYjKhgqfsEveQFtiZf_jbHsvhTaFVo7yXZ_aLR7WbZrYhvb8BenMswwzDMELLgbMk5s3frul7ttktg2VAaQEu4IIU1FZcgpQFh9OU_reCKzIBrXlqm7Q0ppumDZUgFANWMqG1qsYv9Gz3GZkzDe-qRxp6-7obYIPVuwpamnj7j1-i6TKfvNH7ekuvgugmLM8_J_uF-Xz-Vm5fHdb3alNGyUxm8RsFaZwUaaLTi3nkv2rydCa5D0JZxX7XKVcoBGmkdhkYbC5h_5aSYk8VfbUTEwzDGoxt_Duff4hfYdUjf</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Li Hua Xiang</creator><creator>Lian Ming Wang</creator><creator>An Ning Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Modeling microphone in PSpice based on Neural Network</title><author>Li Hua Xiang ; Lian Ming Wang ; An Ning Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fb6e30da93e72c651babb3d0100316ff6901b8d5a85a2e749aefc6792e264bb33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Electronic countermeasures</topic><topic>Frequency response</topic><topic>Integrated circuit modeling</topic><topic>Microphone</topic><topic>Microphones</topic><topic>Neural Network</topic><topic>PSpice</topic><topic>SPICE</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Hua Xiang</creatorcontrib><creatorcontrib>Lian Ming Wang</creatorcontrib><creatorcontrib>An Ning Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Hua Xiang</au><au>Lian Ming Wang</au><au>An Ning Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling microphone in PSpice based on Neural Network</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>13</volume><spage>V13-28</spage><epage>V13-32</epage><pages>V13-28-V13-32</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>Presently, the electret condenser microphone (ECM) is used in almost every consumer and communication audio application. In order to improve the efficiency of the circuit design, circuit simulation is necessary. In this article, we present a method based on Neural Network for modeling ECM, by which the fundamental characteristics of an ECM, including sensitivity, directivity, output impedance and frequency response, are modeled in PSpice. Firstly, each input-output characteristic is approximated with different Neural Network, after which the structures, weights and biases of the Neural Network depicting different characteristic of the ECM are acquired. Secondly, the structures are described in PSpice language to form sub-circuits respectively. Finally, these subcircuits are integrated into a unitary sub-circuit based on the relationship between the inputs and output of the ECM to form the final model.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622642</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-9069
ispartof 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.13, p.V13-28-V13-32
issn 2161-9069
language eng
recordid cdi_ieee_primary_5622642
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computational modeling
Electronic countermeasures
Frequency response
Integrated circuit modeling
Microphone
Microphones
Neural Network
PSpice
SPICE
title Modeling microphone in PSpice based on Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20microphone%20in%20PSpice%20based%20on%20Neural%20Network&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Li%20Hua%20Xiang&rft.date=2010-10&rft.volume=13&rft.spage=V13-28&rft.epage=V13-32&rft.pages=V13-28-V13-32&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622642&rft_dat=%3Cieee_6IE%3E5622642%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622642&rfr_iscdi=true