A SVM kernel for classifying partially occluded images
We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel densi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V10-618 |
---|---|
container_issue | |
container_start_page | V10-615 |
container_title | |
container_volume | 10 |
creator | Risheng Han Hui Ding Guangxue Yue |
description | We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features. |
doi_str_mv | 10.1109/ICCASM.2010.5622641 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622641</ieee_id><sourcerecordid>5622641</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6a4edd78915da55b87f3a772efea785f0084e7084c4f0526c31c152684ff649b3</originalsourceid><addsrcrecordid>eNpVT81qAjEYTKlCxe4TeMkLrE2-_B-XpT-C0oPSq8TsF0mbqmzsYd--C_XSOcwwc5hhCFlwtuScuadV2zbbzRLYGCgNoCW_I5UzlkuQ0oAw-v6fVzAhM-Ca145p90CqUj7ZCKkAwM6Ibuj2Y0O_sD9hpvHc05B9KSkO6XSkF99fk895oOcQ8k-HHU3f_ojlkUyjzwWrm87J7uV5177V6_fXVdus6-TYtdZeYtcZ67jqvFIHa6LwxgBG9MaqyJiVaEYKMjIFOgge-KhWxqilO4g5WfzVJkTcX_pxvB_2t-PiFwztSMI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A SVM kernel for classifying partially occluded images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Risheng Han ; Hui Ding ; Guangxue Yue</creator><creatorcontrib>Risheng Han ; Hui Ding ; Guangxue Yue</creatorcontrib><description>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622641</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bhattacharyya Kernel ; Estimation ; Kernel density estimation ; Support vector machines ; SVM</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-615-V10-618</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Risheng Han</creatorcontrib><creatorcontrib>Hui Ding</creatorcontrib><creatorcontrib>Guangxue Yue</creatorcontrib><title>A SVM kernel for classifying partially occluded images</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</description><subject>Bhattacharyya Kernel</subject><subject>Estimation</subject><subject>Kernel density estimation</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT81qAjEYTKlCxe4TeMkLrE2-_B-XpT-C0oPSq8TsF0mbqmzsYd--C_XSOcwwc5hhCFlwtuScuadV2zbbzRLYGCgNoCW_I5UzlkuQ0oAw-v6fVzAhM-Ca145p90CqUj7ZCKkAwM6Ibuj2Y0O_sD9hpvHc05B9KSkO6XSkF99fk895oOcQ8k-HHU3f_ojlkUyjzwWrm87J7uV5177V6_fXVdus6-TYtdZeYtcZ67jqvFIHa6LwxgBG9MaqyJiVaEYKMjIFOgge-KhWxqilO4g5WfzVJkTcX_pxvB_2t-PiFwztSMI</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Risheng Han</creator><creator>Hui Ding</creator><creator>Guangxue Yue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>A SVM kernel for classifying partially occluded images</title><author>Risheng Han ; Hui Ding ; Guangxue Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6a4edd78915da55b87f3a772efea785f0084e7084c4f0526c31c152684ff649b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bhattacharyya Kernel</topic><topic>Estimation</topic><topic>Kernel density estimation</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Risheng Han</creatorcontrib><creatorcontrib>Hui Ding</creatorcontrib><creatorcontrib>Guangxue Yue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Risheng Han</au><au>Hui Ding</au><au>Guangxue Yue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A SVM kernel for classifying partially occluded images</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>10</volume><spage>V10-615</spage><epage>V10-618</epage><pages>V10-615-V10-618</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622641</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-9069 |
ispartof | 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-615-V10-618 |
issn | 2161-9069 |
language | eng |
recordid | cdi_ieee_primary_5622641 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bhattacharyya Kernel Estimation Kernel density estimation Support vector machines SVM |
title | A SVM kernel for classifying partially occluded images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20SVM%20kernel%20for%20classifying%20partially%20occluded%20images&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Risheng%20Han&rft.date=2010-10&rft.volume=10&rft.spage=V10-615&rft.epage=V10-618&rft.pages=V10-615-V10-618&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622641&rft_dat=%3Cieee_6IE%3E5622641%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622641&rfr_iscdi=true |