A SVM kernel for classifying partially occluded images

We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Risheng Han, Hui Ding, Guangxue Yue
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V10-618
container_issue
container_start_page V10-615
container_title
container_volume 10
creator Risheng Han
Hui Ding
Guangxue Yue
description We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.
doi_str_mv 10.1109/ICCASM.2010.5622641
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622641</ieee_id><sourcerecordid>5622641</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6a4edd78915da55b87f3a772efea785f0084e7084c4f0526c31c152684ff649b3</originalsourceid><addsrcrecordid>eNpVT81qAjEYTKlCxe4TeMkLrE2-_B-XpT-C0oPSq8TsF0mbqmzsYd--C_XSOcwwc5hhCFlwtuScuadV2zbbzRLYGCgNoCW_I5UzlkuQ0oAw-v6fVzAhM-Ca145p90CqUj7ZCKkAwM6Ibuj2Y0O_sD9hpvHc05B9KSkO6XSkF99fk895oOcQ8k-HHU3f_ojlkUyjzwWrm87J7uV5177V6_fXVdus6-TYtdZeYtcZ67jqvFIHa6LwxgBG9MaqyJiVaEYKMjIFOgge-KhWxqilO4g5WfzVJkTcX_pxvB_2t-PiFwztSMI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A SVM kernel for classifying partially occluded images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Risheng Han ; Hui Ding ; Guangxue Yue</creator><creatorcontrib>Risheng Han ; Hui Ding ; Guangxue Yue</creatorcontrib><description>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622641</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bhattacharyya Kernel ; Estimation ; Kernel density estimation ; Support vector machines ; SVM</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-615-V10-618</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Risheng Han</creatorcontrib><creatorcontrib>Hui Ding</creatorcontrib><creatorcontrib>Guangxue Yue</creatorcontrib><title>A SVM kernel for classifying partially occluded images</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</description><subject>Bhattacharyya Kernel</subject><subject>Estimation</subject><subject>Kernel density estimation</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT81qAjEYTKlCxe4TeMkLrE2-_B-XpT-C0oPSq8TsF0mbqmzsYd--C_XSOcwwc5hhCFlwtuScuadV2zbbzRLYGCgNoCW_I5UzlkuQ0oAw-v6fVzAhM-Ca145p90CqUj7ZCKkAwM6Ibuj2Y0O_sD9hpvHc05B9KSkO6XSkF99fk895oOcQ8k-HHU3f_ojlkUyjzwWrm87J7uV5177V6_fXVdus6-TYtdZeYtcZ67jqvFIHa6LwxgBG9MaqyJiVaEYKMjIFOgge-KhWxqilO4g5WfzVJkTcX_pxvB_2t-PiFwztSMI</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Risheng Han</creator><creator>Hui Ding</creator><creator>Guangxue Yue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>A SVM kernel for classifying partially occluded images</title><author>Risheng Han ; Hui Ding ; Guangxue Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6a4edd78915da55b87f3a772efea785f0084e7084c4f0526c31c152684ff649b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bhattacharyya Kernel</topic><topic>Estimation</topic><topic>Kernel density estimation</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Risheng Han</creatorcontrib><creatorcontrib>Hui Ding</creatorcontrib><creatorcontrib>Guangxue Yue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Risheng Han</au><au>Hui Ding</au><au>Guangxue Yue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A SVM kernel for classifying partially occluded images</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>10</volume><spage>V10-615</spage><epage>V10-618</epage><pages>V10-615-V10-618</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>We propose a novel SVM (Support Vector Machine) kernel for classifying partially occluded images in the process of video tracking. The SVM kernel (called Bhattacharyya kernel) is derived from Bhattacharyya coefficient. In our study, the validity of Bhattacharyya kernel is proven. We use kernel density estimation of histogram as SVM's feature space. Experiments show the SVM based on Bhattacharyya kernel can keep high classification accuracy when occlusion or clutter of peripheral pixels appears. Bhattacharyya kernel can be generalized easily when using other features.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622641</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-9069
ispartof 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-615-V10-618
issn 2161-9069
language eng
recordid cdi_ieee_primary_5622641
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bhattacharyya Kernel
Estimation
Kernel density estimation
Support vector machines
SVM
title A SVM kernel for classifying partially occluded images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20SVM%20kernel%20for%20classifying%20partially%20occluded%20images&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Risheng%20Han&rft.date=2010-10&rft.volume=10&rft.spage=V10-615&rft.epage=V10-618&rft.pages=V10-615-V10-618&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622641&rft_dat=%3Cieee_6IE%3E5622641%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622641&rfr_iscdi=true