Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model

High accuracy parameter identification is important to the life prediction by the degradation model. In this paper, the Simulated Annealing Embed Modified Gauss-Newton (SAEMGN) Algorithm is developed and has been applied in the degradation model parameters eliminating for Dielectric Resonator Oscill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yao Jinyong, Su Haibo, Li Xiaogang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V10-656
container_issue
container_start_page V10-653
container_title
container_volume 10
creator Yao Jinyong
Su Haibo
Li Xiaogang
description High accuracy parameter identification is important to the life prediction by the degradation model. In this paper, the Simulated Annealing Embed Modified Gauss-Newton (SAEMGN) Algorithm is developed and has been applied in the degradation model parameters eliminating for Dielectric Resonator Oscillator (DRO). By comparing the local search and global search methods, we use the modified Gauss-Newton method as the local search embedded in the Simulated Annealing. Then, we established simulation model of a DRO in Step-Stress Accelerated Degradation Test to study the convergence properties of the algorithm. Numerical comparisons with MGN, SA, and Very Fast Simulated Annealing (VFSA) shows that the new algorithm could offer a higher accuracy solution with the error values is no more than 10 -20 . This algorithm will help to further improve the life prediction accuracy and credibility.
doi_str_mv 10.1109/ICCASM.2010.5622225
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622225</ieee_id><sourcerecordid>5622225</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-428f534d03eec0b23eb61cfea0a2d5acda8a4df81fc778c8d216b8d197a81d83</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0Aiar0CXrxC6TYzp9zjKJSKrVwKJyrTXZdjBKnSlxB3x5X9MJcdveTZqRZxuZSLKQUxdO6qsrddqFEAGmmgtIbNityLROVJLmK8-z2352qOzZRMpNRIbLigc3G8UsEJWnw6gn7-RitO_Cd7U4teEJeOkfQXtiyqwkxoG2P1tiwrOA0jtErffve8bI99IP1nx33PbdIzltz5kcYoCNPw8h7w13vQhTBwJEOAyB4G5xdj9Q-snsD7Uiz65yy3fPyvXqJNm-rdVVuIlsIHyVKmzROUMREjahVTHUmG0MgQGEKDYKGBI2Wpslz3WgMVWuNsshBS9TxlM3_Ui0R7Y-D7WA476-fi38B6mpi7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yao Jinyong ; Su Haibo ; Li Xiaogang</creator><creatorcontrib>Yao Jinyong ; Su Haibo ; Li Xiaogang</creatorcontrib><description>High accuracy parameter identification is important to the life prediction by the degradation model. In this paper, the Simulated Annealing Embed Modified Gauss-Newton (SAEMGN) Algorithm is developed and has been applied in the degradation model parameters eliminating for Dielectric Resonator Oscillator (DRO). By comparing the local search and global search methods, we use the modified Gauss-Newton method as the local search embedded in the Simulated Annealing. Then, we established simulation model of a DRO in Step-Stress Accelerated Degradation Test to study the convergence properties of the algorithm. Numerical comparisons with MGN, SA, and Very Fast Simulated Annealing (VFSA) shows that the new algorithm could offer a higher accuracy solution with the error values is no more than 10 -20 . This algorithm will help to further improve the life prediction accuracy and credibility.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622225</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annealing ; Convergence ; degradation ; Gauss-Newton ; life prediction ; nonlinear model ; Simulated Annealing</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-653-V10-656</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yao Jinyong</creatorcontrib><creatorcontrib>Su Haibo</creatorcontrib><creatorcontrib>Li Xiaogang</creatorcontrib><title>Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>High accuracy parameter identification is important to the life prediction by the degradation model. In this paper, the Simulated Annealing Embed Modified Gauss-Newton (SAEMGN) Algorithm is developed and has been applied in the degradation model parameters eliminating for Dielectric Resonator Oscillator (DRO). By comparing the local search and global search methods, we use the modified Gauss-Newton method as the local search embedded in the Simulated Annealing. Then, we established simulation model of a DRO in Step-Stress Accelerated Degradation Test to study the convergence properties of the algorithm. Numerical comparisons with MGN, SA, and Very Fast Simulated Annealing (VFSA) shows that the new algorithm could offer a higher accuracy solution with the error values is no more than 10 -20 . This algorithm will help to further improve the life prediction accuracy and credibility.</description><subject>Annealing</subject><subject>Convergence</subject><subject>degradation</subject><subject>Gauss-Newton</subject><subject>life prediction</subject><subject>nonlinear model</subject><subject>Simulated Annealing</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI0Aiar0CXrxC6TYzp9zjKJSKrVwKJyrTXZdjBKnSlxB3x5X9MJcdveTZqRZxuZSLKQUxdO6qsrddqFEAGmmgtIbNityLROVJLmK8-z2352qOzZRMpNRIbLigc3G8UsEJWnw6gn7-RitO_Cd7U4teEJeOkfQXtiyqwkxoG2P1tiwrOA0jtErffve8bI99IP1nx33PbdIzltz5kcYoCNPw8h7w13vQhTBwJEOAyB4G5xdj9Q-snsD7Uiz65yy3fPyvXqJNm-rdVVuIlsIHyVKmzROUMREjahVTHUmG0MgQGEKDYKGBI2Wpslz3WgMVWuNsshBS9TxlM3_Ui0R7Y-D7WA476-fi38B6mpi7Q</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Yao Jinyong</creator><creator>Su Haibo</creator><creator>Li Xiaogang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model</title><author>Yao Jinyong ; Su Haibo ; Li Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-428f534d03eec0b23eb61cfea0a2d5acda8a4df81fc778c8d216b8d197a81d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Annealing</topic><topic>Convergence</topic><topic>degradation</topic><topic>Gauss-Newton</topic><topic>life prediction</topic><topic>nonlinear model</topic><topic>Simulated Annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao Jinyong</creatorcontrib><creatorcontrib>Su Haibo</creatorcontrib><creatorcontrib>Li Xiaogang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao Jinyong</au><au>Su Haibo</au><au>Li Xiaogang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>10</volume><spage>V10-653</spage><epage>V10-656</epage><pages>V10-653-V10-656</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>High accuracy parameter identification is important to the life prediction by the degradation model. In this paper, the Simulated Annealing Embed Modified Gauss-Newton (SAEMGN) Algorithm is developed and has been applied in the degradation model parameters eliminating for Dielectric Resonator Oscillator (DRO). By comparing the local search and global search methods, we use the modified Gauss-Newton method as the local search embedded in the Simulated Annealing. Then, we established simulation model of a DRO in Step-Stress Accelerated Degradation Test to study the convergence properties of the algorithm. Numerical comparisons with MGN, SA, and Very Fast Simulated Annealing (VFSA) shows that the new algorithm could offer a higher accuracy solution with the error values is no more than 10 -20 . This algorithm will help to further improve the life prediction accuracy and credibility.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622225</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-9069
ispartof 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.10, p.V10-653-V10-656
issn 2161-9069
language eng
recordid cdi_ieee_primary_5622225
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Annealing
Convergence
degradation
Gauss-Newton
life prediction
nonlinear model
Simulated Annealing
title Using Simulated Annealing Embedded Modified Gauss-Newton Algorithm to identify parameters of nonlinear degradation model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Simulated%20Annealing%20Embedded%20Modified%20Gauss-Newton%20Algorithm%20to%20identify%20parameters%20of%20nonlinear%20degradation%20model&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Yao%20Jinyong&rft.date=2010-10&rft.volume=10&rft.spage=V10-653&rft.epage=V10-656&rft.pages=V10-653-V10-656&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622225&rft_dat=%3Cieee_6IE%3E5622225%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622225&rfr_iscdi=true