Combining the spatial and temporal eigen-space for visual tracking
Visual tracking is an important research topic in computer vision community. Most subspace based tracking algorithms focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust visual tracking a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V12-155 |
---|---|
container_issue | |
container_start_page | V12-152 |
container_title | |
container_volume | 12 |
creator | Xiaoqin Zhang Qiuyun Cheng Xingchu Shi Weiming Hu Zhenjie Hong |
description | Visual tracking is an important research topic in computer vision community. Most subspace based tracking algorithms focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust visual tracking algorithm which effectively combines the spatial and temporal eigen-space of the object. In order to captures the variations of object appearance, an incremental updating strategy is developed to update the eigen-space and mean of the object. Experimental results demonstrate that, compared with the state-of-the-art subspace based tracking algorithms, the proposed tracking algorithm is more robust and effective. |
doi_str_mv | 10.1109/ICCASM.2010.5622125 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5622125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5622125</ieee_id><sourcerecordid>5622125</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-30c8228a30da854d0b8c992e659da8b19605427fba8b9d1b79cda31e4d8196713</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRY0AiarkC7rxD6TY4_eyRDwqFbGg-8qJJ8XQPBQHJP4eS3TDbEbnXM2MNISsOFtzztzdtqo2by9rYFkoDcBBXZDCGcslSGlAGH35jxVckQVwzUvHtLshRUofLJdUAGAX5L4aujr2sT_S-R1pGv0c_Yn6PtAZu3GYMmA8Yl_mqEHaDhP9jukr63nyzWcevCXXrT8lLM59SfaPD_vqudy9Pm2rza6Mjs2lYI3NF71gwVslA6tt4xygVi6LmjvNlATT1hlc4LVxTfCCoww2Z4aLJVn9rY2IeBin2Pnp53B-gvgFaD1Nfg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combining the spatial and temporal eigen-space for visual tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoqin Zhang ; Qiuyun Cheng ; Xingchu Shi ; Weiming Hu ; Zhenjie Hong</creator><creatorcontrib>Xiaoqin Zhang ; Qiuyun Cheng ; Xingchu Shi ; Weiming Hu ; Zhenjie Hong</creatorcontrib><description>Visual tracking is an important research topic in computer vision community. Most subspace based tracking algorithms focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust visual tracking algorithm which effectively combines the spatial and temporal eigen-space of the object. In order to captures the variations of object appearance, an incremental updating strategy is developed to update the eigen-space and mean of the object. Experimental results demonstrate that, compared with the state-of-the-art subspace based tracking algorithms, the proposed tracking algorithm is more robust and effective.</description><identifier>ISSN: 2161-9069</identifier><identifier>ISBN: 9781424472352</identifier><identifier>ISBN: 1424472350</identifier><identifier>EISBN: 9781424472376</identifier><identifier>EISBN: 1424472377</identifier><identifier>DOI: 10.1109/ICCASM.2010.5622125</identifier><language>eng</language><publisher>IEEE</publisher><subject>incremental learning ; Object tracking ; subspace learning ; Target tracking</subject><ispartof>2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.12, p.V12-152-V12-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5622125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5622125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoqin Zhang</creatorcontrib><creatorcontrib>Qiuyun Cheng</creatorcontrib><creatorcontrib>Xingchu Shi</creatorcontrib><creatorcontrib>Weiming Hu</creatorcontrib><creatorcontrib>Zhenjie Hong</creatorcontrib><title>Combining the spatial and temporal eigen-space for visual tracking</title><title>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</title><addtitle>ICCASM</addtitle><description>Visual tracking is an important research topic in computer vision community. Most subspace based tracking algorithms focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust visual tracking algorithm which effectively combines the spatial and temporal eigen-space of the object. In order to captures the variations of object appearance, an incremental updating strategy is developed to update the eigen-space and mean of the object. Experimental results demonstrate that, compared with the state-of-the-art subspace based tracking algorithms, the proposed tracking algorithm is more robust and effective.</description><subject>incremental learning</subject><subject>Object tracking</subject><subject>subspace learning</subject><subject>Target tracking</subject><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><isbn>9781424472376</isbn><isbn>1424472377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRY0AiarkC7rxD6TY4_eyRDwqFbGg-8qJJ8XQPBQHJP4eS3TDbEbnXM2MNISsOFtzztzdtqo2by9rYFkoDcBBXZDCGcslSGlAGH35jxVckQVwzUvHtLshRUofLJdUAGAX5L4aujr2sT_S-R1pGv0c_Yn6PtAZu3GYMmA8Yl_mqEHaDhP9jukr63nyzWcevCXXrT8lLM59SfaPD_vqudy9Pm2rza6Mjs2lYI3NF71gwVslA6tt4xygVi6LmjvNlATT1hlc4LVxTfCCoww2Z4aLJVn9rY2IeBin2Pnp53B-gvgFaD1Nfg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Xiaoqin Zhang</creator><creator>Qiuyun Cheng</creator><creator>Xingchu Shi</creator><creator>Weiming Hu</creator><creator>Zhenjie Hong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Combining the spatial and temporal eigen-space for visual tracking</title><author>Xiaoqin Zhang ; Qiuyun Cheng ; Xingchu Shi ; Weiming Hu ; Zhenjie Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-30c8228a30da854d0b8c992e659da8b19605427fba8b9d1b79cda31e4d8196713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>incremental learning</topic><topic>Object tracking</topic><topic>subspace learning</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoqin Zhang</creatorcontrib><creatorcontrib>Qiuyun Cheng</creatorcontrib><creatorcontrib>Xingchu Shi</creatorcontrib><creatorcontrib>Weiming Hu</creatorcontrib><creatorcontrib>Zhenjie Hong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoqin Zhang</au><au>Qiuyun Cheng</au><au>Xingchu Shi</au><au>Weiming Hu</au><au>Zhenjie Hong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combining the spatial and temporal eigen-space for visual tracking</atitle><btitle>2010 International Conference on Computer Application and System Modeling (ICCASM 2010)</btitle><stitle>ICCASM</stitle><date>2010-10</date><risdate>2010</risdate><volume>12</volume><spage>V12-152</spage><epage>V12-155</epage><pages>V12-152-V12-155</pages><issn>2161-9069</issn><isbn>9781424472352</isbn><isbn>1424472350</isbn><eisbn>9781424472376</eisbn><eisbn>1424472377</eisbn><abstract>Visual tracking is an important research topic in computer vision community. Most subspace based tracking algorithms focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust visual tracking algorithm which effectively combines the spatial and temporal eigen-space of the object. In order to captures the variations of object appearance, an incremental updating strategy is developed to update the eigen-space and mean of the object. Experimental results demonstrate that, compared with the state-of-the-art subspace based tracking algorithms, the proposed tracking algorithm is more robust and effective.</abstract><pub>IEEE</pub><doi>10.1109/ICCASM.2010.5622125</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-9069 |
ispartof | 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, Vol.12, p.V12-152-V12-155 |
issn | 2161-9069 |
language | eng |
recordid | cdi_ieee_primary_5622125 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | incremental learning Object tracking subspace learning Target tracking |
title | Combining the spatial and temporal eigen-space for visual tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combining%20the%20spatial%20and%20temporal%20eigen-space%20for%20visual%20tracking&rft.btitle=2010%20International%20Conference%20on%20Computer%20Application%20and%20System%20Modeling%20(ICCASM%202010)&rft.au=Xiaoqin%20Zhang&rft.date=2010-10&rft.volume=12&rft.spage=V12-152&rft.epage=V12-155&rft.pages=V12-152-V12-155&rft.issn=2161-9069&rft.isbn=9781424472352&rft.isbn_list=1424472350&rft_id=info:doi/10.1109/ICCASM.2010.5622125&rft_dat=%3Cieee_6IE%3E5622125%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472376&rft.eisbn_list=1424472377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5622125&rfr_iscdi=true |