Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels
In the class of systems with linear precoder and decision feedback equalizers (DFE) for zero-padded (ZP) multiple-input multiple-output (MIMO) frequency selective channels, existing optimal transceiver designs present two drawbacks. First, the optimal systems require a large number of feedback bits...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2011-02, Vol.59 (2), p.713-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 2 |
container_start_page | 713 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Ching-Chih Weng Vaidyanathan, P P |
description | In the class of systems with linear precoder and decision feedback equalizers (DFE) for zero-padded (ZP) multiple-input multiple-output (MIMO) frequency selective channels, existing optimal transceiver designs present two drawbacks. First, the optimal systems require a large number of feedback bits from the receiver to encode the full precoding matrix. Second, the full precoding matrix leads to complex computations. These disadvantages become more severe as the bandwidth (BW) efficiency increases. In this paper, we propose using block diagonal geometric mean decomposition (BD-GMD) to design the transceiver. Two new BD-GMD transceivers are proposed: the ZF-BD-GMD system, where the receiver is a zero-forcing DFE (ZF-DFE), and the MMSE-BD-GMD system, where the receiver is a minimum- mean-square-error DFE (MMSE-DFE). The BD-GMD systems introduced here have the following four properties: a) They use the block diagonal unitary precoding technique to reduce the required number of encoding bits and simplify the computation. b) For any block size, the BD-GMD systems are optimal within the family of systems using block diagonal unitary precoders and DFEs. As block size gets larger, the BD-GMD systems produce uncoded bit error rate (BER) performance similar to the optimal systems using unitary precoders and DFEs. c) For the two ZF transceivers (ZF-Optimal and ZF-BD-GMD) and the two MMSE transceivers (MMSE-Optimal and MMSE-BD-GMD), the average BER degrades as the BW efficiency increases. d) In the case of single-input single-output (SISO) channels, the BD-GMD systems have the same performance as those of the lazy precoder transceivers. These properties make the proposed BD-GMD systems more favorable designs in practical implementation than the optimal systems. |
doi_str_mv | 10.1109/TSP.2010.2090522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5617291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5617291</ieee_id><sourcerecordid>2237092021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8c3e228d3390a22da7399b49b29060f47aca617be5ba3b733d0c8ac9736c71753</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpcgiKfU2d3s11FbrUKLQiuIl7DZTDSaJnW3Ffrfu9LiwdPMML83zHuEnFIYUArmaj57GjCIEwMDgrE90qMmoylkSu7HHgRPhVYvh-QohA8AmmVG9sjopuncZzKq7VvX2iYZT0dJ1fnkFX2XPtmyxDKZPkwfkzuPX2ts3SaZYYNuVX9jMny3bYtNOCYHlW0Cnuxqnzzf3c6H9-nkcfwwvJ6kLqN6lWrHkTFdcm7AMlZaxY0pMlMwAxKqTFlnJVUFisLyQnFegtPWGcWlU1QJ3ieX27tL38Vnwipf1MFh09gWu3XItaSCCxEFfXL-j_zo1j4ajBDXRktgOkKwhZzvQvBY5UtfL6zf5BTy31DzGGr-G2q-CzVKLnZ3bXC2qbxtXR3-dIwryTXIyJ1tuRoR_9YiumOG8h_883zG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838986028</pqid></control><display><type>article</type><title>Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Ching-Chih Weng ; Vaidyanathan, P P</creator><creatorcontrib>Ching-Chih Weng ; Vaidyanathan, P P</creatorcontrib><description>In the class of systems with linear precoder and decision feedback equalizers (DFE) for zero-padded (ZP) multiple-input multiple-output (MIMO) frequency selective channels, existing optimal transceiver designs present two drawbacks. First, the optimal systems require a large number of feedback bits from the receiver to encode the full precoding matrix. Second, the full precoding matrix leads to complex computations. These disadvantages become more severe as the bandwidth (BW) efficiency increases. In this paper, we propose using block diagonal geometric mean decomposition (BD-GMD) to design the transceiver. Two new BD-GMD transceivers are proposed: the ZF-BD-GMD system, where the receiver is a zero-forcing DFE (ZF-DFE), and the MMSE-BD-GMD system, where the receiver is a minimum- mean-square-error DFE (MMSE-DFE). The BD-GMD systems introduced here have the following four properties: a) They use the block diagonal unitary precoding technique to reduce the required number of encoding bits and simplify the computation. b) For any block size, the BD-GMD systems are optimal within the family of systems using block diagonal unitary precoders and DFEs. As block size gets larger, the BD-GMD systems produce uncoded bit error rate (BER) performance similar to the optimal systems using unitary precoders and DFEs. c) For the two ZF transceivers (ZF-Optimal and ZF-BD-GMD) and the two MMSE transceivers (MMSE-Optimal and MMSE-BD-GMD), the average BER degrades as the BW efficiency increases. d) In the case of single-input single-output (SISO) channels, the BD-GMD systems have the same performance as those of the lazy precoder transceivers. These properties make the proposed BD-GMD systems more favorable designs in practical implementation than the optimal systems.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2090522</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bandwidth ; Bit error rate ; Block diagonal matrix ; block Toeplitz matrix ; Blocking ; Channels ; Coding, codes ; Computation ; decision feed back ; Decision feedback equalizers ; Design engineering ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Feedback ; geometric mean decomposition ; Information, signal and communications theory ; MIMO ; Miscellaneous ; Noise ; Optimization ; Receivers ; Signal and communications theory ; Signal processing ; Signal, noise ; Szego's theorem ; Telecommunications and information theory ; Transceivers</subject><ispartof>IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.713-727</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8c3e228d3390a22da7399b49b29060f47aca617be5ba3b733d0c8ac9736c71753</citedby><cites>FETCH-LOGICAL-c418t-8c3e228d3390a22da7399b49b29060f47aca617be5ba3b733d0c8ac9736c71753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5617291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5617291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23763806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ching-Chih Weng</creatorcontrib><creatorcontrib>Vaidyanathan, P P</creatorcontrib><title>Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In the class of systems with linear precoder and decision feedback equalizers (DFE) for zero-padded (ZP) multiple-input multiple-output (MIMO) frequency selective channels, existing optimal transceiver designs present two drawbacks. First, the optimal systems require a large number of feedback bits from the receiver to encode the full precoding matrix. Second, the full precoding matrix leads to complex computations. These disadvantages become more severe as the bandwidth (BW) efficiency increases. In this paper, we propose using block diagonal geometric mean decomposition (BD-GMD) to design the transceiver. Two new BD-GMD transceivers are proposed: the ZF-BD-GMD system, where the receiver is a zero-forcing DFE (ZF-DFE), and the MMSE-BD-GMD system, where the receiver is a minimum- mean-square-error DFE (MMSE-DFE). The BD-GMD systems introduced here have the following four properties: a) They use the block diagonal unitary precoding technique to reduce the required number of encoding bits and simplify the computation. b) For any block size, the BD-GMD systems are optimal within the family of systems using block diagonal unitary precoders and DFEs. As block size gets larger, the BD-GMD systems produce uncoded bit error rate (BER) performance similar to the optimal systems using unitary precoders and DFEs. c) For the two ZF transceivers (ZF-Optimal and ZF-BD-GMD) and the two MMSE transceivers (MMSE-Optimal and MMSE-BD-GMD), the average BER degrades as the BW efficiency increases. d) In the case of single-input single-output (SISO) channels, the BD-GMD systems have the same performance as those of the lazy precoder transceivers. These properties make the proposed BD-GMD systems more favorable designs in practical implementation than the optimal systems.</description><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Bit error rate</subject><subject>Block diagonal matrix</subject><subject>block Toeplitz matrix</subject><subject>Blocking</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Computation</subject><subject>decision feed back</subject><subject>Decision feedback equalizers</subject><subject>Design engineering</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>geometric mean decomposition</subject><subject>Information, signal and communications theory</subject><subject>MIMO</subject><subject>Miscellaneous</subject><subject>Noise</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Szego's theorem</subject><subject>Telecommunications and information theory</subject><subject>Transceivers</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpcgiKfU2d3s11FbrUKLQiuIl7DZTDSaJnW3Ffrfu9LiwdPMML83zHuEnFIYUArmaj57GjCIEwMDgrE90qMmoylkSu7HHgRPhVYvh-QohA8AmmVG9sjopuncZzKq7VvX2iYZT0dJ1fnkFX2XPtmyxDKZPkwfkzuPX2ts3SaZYYNuVX9jMny3bYtNOCYHlW0Cnuxqnzzf3c6H9-nkcfwwvJ6kLqN6lWrHkTFdcm7AMlZaxY0pMlMwAxKqTFlnJVUFisLyQnFegtPWGcWlU1QJ3ieX27tL38Vnwipf1MFh09gWu3XItaSCCxEFfXL-j_zo1j4ajBDXRktgOkKwhZzvQvBY5UtfL6zf5BTy31DzGGr-G2q-CzVKLnZ3bXC2qbxtXR3-dIwryTXIyJ1tuRoR_9YiumOG8h_883zG</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ching-Chih Weng</creator><creator>Vaidyanathan, P P</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110201</creationdate><title>Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels</title><author>Ching-Chih Weng ; Vaidyanathan, P P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8c3e228d3390a22da7399b49b29060f47aca617be5ba3b733d0c8ac9736c71753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Bit error rate</topic><topic>Block diagonal matrix</topic><topic>block Toeplitz matrix</topic><topic>Blocking</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Computation</topic><topic>decision feed back</topic><topic>Decision feedback equalizers</topic><topic>Design engineering</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>geometric mean decomposition</topic><topic>Information, signal and communications theory</topic><topic>MIMO</topic><topic>Miscellaneous</topic><topic>Noise</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Szego's theorem</topic><topic>Telecommunications and information theory</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ching-Chih Weng</creatorcontrib><creatorcontrib>Vaidyanathan, P P</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ching-Chih Weng</au><au>Vaidyanathan, P P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>59</volume><issue>2</issue><spage>713</spage><epage>727</epage><pages>713-727</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In the class of systems with linear precoder and decision feedback equalizers (DFE) for zero-padded (ZP) multiple-input multiple-output (MIMO) frequency selective channels, existing optimal transceiver designs present two drawbacks. First, the optimal systems require a large number of feedback bits from the receiver to encode the full precoding matrix. Second, the full precoding matrix leads to complex computations. These disadvantages become more severe as the bandwidth (BW) efficiency increases. In this paper, we propose using block diagonal geometric mean decomposition (BD-GMD) to design the transceiver. Two new BD-GMD transceivers are proposed: the ZF-BD-GMD system, where the receiver is a zero-forcing DFE (ZF-DFE), and the MMSE-BD-GMD system, where the receiver is a minimum- mean-square-error DFE (MMSE-DFE). The BD-GMD systems introduced here have the following four properties: a) They use the block diagonal unitary precoding technique to reduce the required number of encoding bits and simplify the computation. b) For any block size, the BD-GMD systems are optimal within the family of systems using block diagonal unitary precoders and DFEs. As block size gets larger, the BD-GMD systems produce uncoded bit error rate (BER) performance similar to the optimal systems using unitary precoders and DFEs. c) For the two ZF transceivers (ZF-Optimal and ZF-BD-GMD) and the two MMSE transceivers (MMSE-Optimal and MMSE-BD-GMD), the average BER degrades as the BW efficiency increases. d) In the case of single-input single-output (SISO) channels, the BD-GMD systems have the same performance as those of the lazy precoder transceivers. These properties make the proposed BD-GMD systems more favorable designs in practical implementation than the optimal systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2090522</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.713-727 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_5617291 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bandwidth Bit error rate Block diagonal matrix block Toeplitz matrix Blocking Channels Coding, codes Computation decision feed back Decision feedback equalizers Design engineering Detection, estimation, filtering, equalization, prediction Exact sciences and technology Feedback geometric mean decomposition Information, signal and communications theory MIMO Miscellaneous Noise Optimization Receivers Signal and communications theory Signal processing Signal, noise Szego's theorem Telecommunications and information theory Transceivers |
title | Block Diagonal GMD for Zero-Padded MIMO Frequency Selective Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Diagonal%20GMD%20for%20Zero-Padded%20MIMO%20Frequency%20Selective%20Channels&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ching-Chih%20Weng&rft.date=2011-02-01&rft.volume=59&rft.issue=2&rft.spage=713&rft.epage=727&rft.pages=713-727&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2090522&rft_dat=%3Cproquest_RIE%3E2237092021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838986028&rft_id=info:pmid/&rft_ieee_id=5617291&rfr_iscdi=true |