Recognition of Facial Expression Using Centroid Neural Network

A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong-Chul Park, Huynh Thuy, Dong-Min Woo, Yunsik Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue
container_start_page 480
container_title
container_volume
creator Dong-Chul Park
Huynh Thuy
Dong-Min Woo
Yunsik Lee
description A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.
doi_str_mv 10.1109/CyberC.2010.94
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5616993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5616993</ieee_id><sourcerecordid>5616993</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7b875bb6a1574fd3aa4f01d6d5b79ad19e9f1df44f9d461406d6963e263e90c03</originalsourceid><addsrcrecordid>eNotjF1LwzAYhSMiqLO33njTP9CZjzdJ3xtByqbCmCDzeqTNmxGd7Ugqun9vRQ88HHg4HMauBZ8LwfG2ObaUmrnkk0A4YQXamluDGqTS-pRdCpAANSjg56zI-Y1PAS2l1Bfs7oW6YdfHMQ59OYRy6bro9uXi-5Ao51_5mmO_KxvqxzREX67pM02DNY1fQ3q_YmfB7TMV_z1jm-Vi0zxWq-eHp-Z-VUXkY2Xb2uq2NU5oC8Er5yBw4Y3XrUXnBRIG4QNAQA9GADfeoFEkJ5B3XM3Yzd9tJKLtIcUPl45bbYRBVOoHxIlJXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of Facial Expression Using Centroid Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dong-Chul Park ; Huynh Thuy ; Dong-Min Woo ; Yunsik Lee</creator><creatorcontrib>Dong-Chul Park ; Huynh Thuy ; Dong-Min Woo ; Yunsik Lee</creatorcontrib><description>A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.</description><identifier>ISBN: 1424484340</identifier><identifier>ISBN: 9781424484348</identifier><identifier>EISBN: 9780769542355</identifier><identifier>EISBN: 0769542352</identifier><identifier>DOI: 10.1109/CyberC.2010.94</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Face ; Face recognition ; facial expression ; Feature extraction ; Histograms ; neural network ; Pixel ; recognition</subject><ispartof>2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2010, p.480-485</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5616993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5616993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong-Chul Park</creatorcontrib><creatorcontrib>Huynh Thuy</creatorcontrib><creatorcontrib>Dong-Min Woo</creatorcontrib><creatorcontrib>Yunsik Lee</creatorcontrib><title>Recognition of Facial Expression Using Centroid Neural Network</title><title>2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery</title><addtitle>cyberc</addtitle><description>A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.</description><subject>Clustering algorithms</subject><subject>Face</subject><subject>Face recognition</subject><subject>facial expression</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>neural network</subject><subject>Pixel</subject><subject>recognition</subject><isbn>1424484340</isbn><isbn>9781424484348</isbn><isbn>9780769542355</isbn><isbn>0769542352</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYhSMiqLO33njTP9CZjzdJ3xtByqbCmCDzeqTNmxGd7Ugqun9vRQ88HHg4HMauBZ8LwfG2ObaUmrnkk0A4YQXamluDGqTS-pRdCpAANSjg56zI-Y1PAS2l1Bfs7oW6YdfHMQ59OYRy6bro9uXi-5Ao51_5mmO_KxvqxzREX67pM02DNY1fQ3q_YmfB7TMV_z1jm-Vi0zxWq-eHp-Z-VUXkY2Xb2uq2NU5oC8Er5yBw4Y3XrUXnBRIG4QNAQA9GADfeoFEkJ5B3XM3Yzd9tJKLtIcUPl45bbYRBVOoHxIlJXQ</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Dong-Chul Park</creator><creator>Huynh Thuy</creator><creator>Dong-Min Woo</creator><creator>Yunsik Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Recognition of Facial Expression Using Centroid Neural Network</title><author>Dong-Chul Park ; Huynh Thuy ; Dong-Min Woo ; Yunsik Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7b875bb6a1574fd3aa4f01d6d5b79ad19e9f1df44f9d461406d6963e263e90c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Clustering algorithms</topic><topic>Face</topic><topic>Face recognition</topic><topic>facial expression</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>neural network</topic><topic>Pixel</topic><topic>recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong-Chul Park</creatorcontrib><creatorcontrib>Huynh Thuy</creatorcontrib><creatorcontrib>Dong-Min Woo</creatorcontrib><creatorcontrib>Yunsik Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong-Chul Park</au><au>Huynh Thuy</au><au>Dong-Min Woo</au><au>Yunsik Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of Facial Expression Using Centroid Neural Network</atitle><btitle>2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery</btitle><stitle>cyberc</stitle><date>2010-10</date><risdate>2010</risdate><spage>480</spage><epage>485</epage><pages>480-485</pages><isbn>1424484340</isbn><isbn>9781424484348</isbn><eisbn>9780769542355</eisbn><eisbn>0769542352</eisbn><abstract>A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.</abstract><pub>IEEE</pub><doi>10.1109/CyberC.2010.94</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424484340
ispartof 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2010, p.480-485
issn
language eng
recordid cdi_ieee_primary_5616993
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Face
Face recognition
facial expression
Feature extraction
Histograms
neural network
Pixel
recognition
title Recognition of Facial Expression Using Centroid Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20Facial%20Expression%20Using%20Centroid%20Neural%20Network&rft.btitle=2010%20International%20Conference%20on%20Cyber-Enabled%20Distributed%20Computing%20and%20Knowledge%20Discovery&rft.au=Dong-Chul%20Park&rft.date=2010-10&rft.spage=480&rft.epage=485&rft.pages=480-485&rft.isbn=1424484340&rft.isbn_list=9781424484348&rft_id=info:doi/10.1109/CyberC.2010.94&rft_dat=%3Cieee_6IE%3E5616993%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542355&rft.eisbn_list=0769542352&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5616993&rfr_iscdi=true