Learning Bregman Distance Functions for Semi-Supervised Clustering
Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2012-03, Vol.24 (3), p.478-491 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 491 |
---|---|
container_issue | 3 |
container_start_page | 478 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 24 |
creator | Lei Wu Hoi, S. C. H. Rong Jin Jianke Zhu Nenghai Yu |
description | Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique. |
doi_str_mv | 10.1109/TKDE.2010.215 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_5611527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5611527</ieee_id><sourcerecordid>10_1109_TKDE_2010_215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4ePXnpH8iaSZOmPbqfigUPu55LmkyWyLZdklbw39uy4mlm4Jn3hYeQR2ALAFY8H97XmwVn48lBXpEZSJlTDgVcjzsTQEUq1C25i_GLMZarHGZkWaIOrW-PyTLgsdFtsvax163BZDu0pvddGxPXhWSPjaf74Yzh20e0yeo0xB7D-HlPbpw-RXz4m3Pyud0cVq-0_Ni9rV5KaniR9VQKlJzD2Csss4pZVwOmRqNTShdGIKaWW4tcGIt1XstM65wZ7ZCnUrksnRN6yTWhizGgq87BNzr8VMCqSUA1CagmAdUoYOSfLrxHxH9WZgCSq_QXSMhYIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</creator><creatorcontrib>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</creatorcontrib><description>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2010.215</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bregman distance ; Clustering algorithms ; Convex functions ; distance functions ; Kernel ; Linear matrix inequalities ; Measurement ; metric learning ; Training ; Training data</subject><ispartof>IEEE transactions on knowledge and data engineering, 2012-03, Vol.24 (3), p.478-491</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</citedby><cites>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5611527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5611527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lei Wu</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><creatorcontrib>Rong Jin</creatorcontrib><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Nenghai Yu</creatorcontrib><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</description><subject>Bregman distance</subject><subject>Clustering algorithms</subject><subject>Convex functions</subject><subject>distance functions</subject><subject>Kernel</subject><subject>Linear matrix inequalities</subject><subject>Measurement</subject><subject>metric learning</subject><subject>Training</subject><subject>Training data</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK4ePXnpH8iaSZOmPbqfigUPu55LmkyWyLZdklbw39uy4mlm4Jn3hYeQR2ALAFY8H97XmwVn48lBXpEZSJlTDgVcjzsTQEUq1C25i_GLMZarHGZkWaIOrW-PyTLgsdFtsvax163BZDu0pvddGxPXhWSPjaf74Yzh20e0yeo0xB7D-HlPbpw-RXz4m3Pyud0cVq-0_Ni9rV5KaniR9VQKlJzD2Csss4pZVwOmRqNTShdGIKaWW4tcGIt1XstM65wZ7ZCnUrksnRN6yTWhizGgq87BNzr8VMCqSUA1CagmAdUoYOSfLrxHxH9WZgCSq_QXSMhYIA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Lei Wu</creator><creator>Hoi, S. C. H.</creator><creator>Rong Jin</creator><creator>Jianke Zhu</creator><creator>Nenghai Yu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><author>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bregman distance</topic><topic>Clustering algorithms</topic><topic>Convex functions</topic><topic>distance functions</topic><topic>Kernel</topic><topic>Linear matrix inequalities</topic><topic>Measurement</topic><topic>metric learning</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei Wu</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><creatorcontrib>Rong Jin</creatorcontrib><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Nenghai Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lei Wu</au><au>Hoi, S. C. H.</au><au>Rong Jin</au><au>Jianke Zhu</au><au>Nenghai Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Bregman Distance Functions for Semi-Supervised Clustering</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>478</spage><epage>491</epage><pages>478-491</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2010.215</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2012-03, Vol.24 (3), p.478-491 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_5611527 |
source | IEEE Electronic Library (IEL) |
subjects | Bregman distance Clustering algorithms Convex functions distance functions Kernel Linear matrix inequalities Measurement metric learning Training Training data |
title | Learning Bregman Distance Functions for Semi-Supervised Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Bregman%20Distance%20Functions%20for%20Semi-Supervised%20Clustering&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Lei%20Wu&rft.date=2012-03-01&rft.volume=24&rft.issue=3&rft.spage=478&rft.epage=491&rft.pages=478-491&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2010.215&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2010_215%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5611527&rfr_iscdi=true |