Learning Bregman Distance Functions for Semi-Supervised Clustering

Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2012-03, Vol.24 (3), p.478-491
Hauptverfasser: Lei Wu, Hoi, S. C. H., Rong Jin, Jianke Zhu, Nenghai Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 3
container_start_page 478
container_title IEEE transactions on knowledge and data engineering
container_volume 24
creator Lei Wu
Hoi, S. C. H.
Rong Jin
Jianke Zhu
Nenghai Yu
description Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.
doi_str_mv 10.1109/TKDE.2010.215
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_5611527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5611527</ieee_id><sourcerecordid>10_1109_TKDE_2010_215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4ePXnpH8iaSZOmPbqfigUPu55LmkyWyLZdklbw39uy4mlm4Jn3hYeQR2ALAFY8H97XmwVn48lBXpEZSJlTDgVcjzsTQEUq1C25i_GLMZarHGZkWaIOrW-PyTLgsdFtsvax163BZDu0pvddGxPXhWSPjaf74Yzh20e0yeo0xB7D-HlPbpw-RXz4m3Pyud0cVq-0_Ni9rV5KaniR9VQKlJzD2Csss4pZVwOmRqNTShdGIKaWW4tcGIt1XstM65wZ7ZCnUrksnRN6yTWhizGgq87BNzr8VMCqSUA1CagmAdUoYOSfLrxHxH9WZgCSq_QXSMhYIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</creator><creatorcontrib>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</creatorcontrib><description>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2010.215</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bregman distance ; Clustering algorithms ; Convex functions ; distance functions ; Kernel ; Linear matrix inequalities ; Measurement ; metric learning ; Training ; Training data</subject><ispartof>IEEE transactions on knowledge and data engineering, 2012-03, Vol.24 (3), p.478-491</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</citedby><cites>FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5611527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5611527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lei Wu</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><creatorcontrib>Rong Jin</creatorcontrib><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Nenghai Yu</creatorcontrib><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</description><subject>Bregman distance</subject><subject>Clustering algorithms</subject><subject>Convex functions</subject><subject>distance functions</subject><subject>Kernel</subject><subject>Linear matrix inequalities</subject><subject>Measurement</subject><subject>metric learning</subject><subject>Training</subject><subject>Training data</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK4ePXnpH8iaSZOmPbqfigUPu55LmkyWyLZdklbw39uy4mlm4Jn3hYeQR2ALAFY8H97XmwVn48lBXpEZSJlTDgVcjzsTQEUq1C25i_GLMZarHGZkWaIOrW-PyTLgsdFtsvax163BZDu0pvddGxPXhWSPjaf74Yzh20e0yeo0xB7D-HlPbpw-RXz4m3Pyud0cVq-0_Ni9rV5KaniR9VQKlJzD2Csss4pZVwOmRqNTShdGIKaWW4tcGIt1XstM65wZ7ZCnUrksnRN6yTWhizGgq87BNzr8VMCqSUA1CagmAdUoYOSfLrxHxH9WZgCSq_QXSMhYIA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Lei Wu</creator><creator>Hoi, S. C. H.</creator><creator>Rong Jin</creator><creator>Jianke Zhu</creator><creator>Nenghai Yu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>Learning Bregman Distance Functions for Semi-Supervised Clustering</title><author>Lei Wu ; Hoi, S. C. H. ; Rong Jin ; Jianke Zhu ; Nenghai Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-54e52210874d0d70dfb1e3caef77a9c4ee3d2dde24cdeb8b56aa80cafe2357f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bregman distance</topic><topic>Clustering algorithms</topic><topic>Convex functions</topic><topic>distance functions</topic><topic>Kernel</topic><topic>Linear matrix inequalities</topic><topic>Measurement</topic><topic>metric learning</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei Wu</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><creatorcontrib>Rong Jin</creatorcontrib><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Nenghai Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lei Wu</au><au>Hoi, S. C. H.</au><au>Rong Jin</au><au>Jianke Zhu</au><au>Nenghai Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Bregman Distance Functions for Semi-Supervised Clustering</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>478</spage><epage>491</epage><pages>478-491</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Learning distance functions with side information plays a key role in many data mining applications. Conventional distance metric learning approaches often assume that the target distance function is represented in some form of Mahalanobis distance. These approaches usually work well when data are in low dimensionality, but often become computationally expensive or even infeasible when handling high-dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions with side information. It aims to learn a Bregman distance function using a nonparametric approach that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general than the conventional approach for distance metric learning, and is able to handle high-dimensional data efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance functions with side information reveals clear advantages of the proposed technique.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2010.215</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2012-03, Vol.24 (3), p.478-491
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_5611527
source IEEE Electronic Library (IEL)
subjects Bregman distance
Clustering algorithms
Convex functions
distance functions
Kernel
Linear matrix inequalities
Measurement
metric learning
Training
Training data
title Learning Bregman Distance Functions for Semi-Supervised Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Bregman%20Distance%20Functions%20for%20Semi-Supervised%20Clustering&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Lei%20Wu&rft.date=2012-03-01&rft.volume=24&rft.issue=3&rft.spage=478&rft.epage=491&rft.pages=478-491&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2010.215&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2010_215%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5611527&rfr_iscdi=true