Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria

The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Luyue Xia, Haitian Pan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue
container_start_page 216
container_title
container_volume 3
creator Luyue Xia
Haitian Pan
description The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.
doi_str_mv 10.1109/CMCE.2010.5610339
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5610339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5610339</ieee_id><sourcerecordid>5610339</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8c0959d7daa5547d8f0c87722d2397a2b00469cc791a5830d475952d0aa0c5663</originalsourceid><addsrcrecordid>eNo1kMFKAzEYhCMqWGsfQLzkBbb-STab5ChL1ULFS-8lu_lXYrfZNUnRvr0L1tPwDczADCH3DJaMgXms3-rVksOEsmIghLkgt6zkZamM1OUlWRil_1mJKzLjTJqiAl7dkEVKnwAgmNZa6Rn5WocOI4bsbU8xZX-w2Q-BDh0dh_40xmE89RiQHrDP1AeHP_SYfPigKdt2j44GPMYpGzB_D3GfaGPT5E4VtklDf8xIMcYh0jb6jNHbO3Ld2T7h4qxzsn1ebevXYvP-sq6fNoU3kAvdgpHGKWetlKVyuoNWK8W548IoyxuAsjJtqwyzUgtwpZJGcgfWQiurSszJw1-tR8TdGKdh8bQ7HyZ-AUsgXqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Luyue Xia ; Haitian Pan</creator><creatorcontrib>Luyue Xia ; Haitian Pan</creatorcontrib><description>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</description><identifier>ISSN: 2159-6026</identifier><identifier>ISBN: 9781424479573</identifier><identifier>ISBN: 1424479576</identifier><identifier>EISBN: 1424479584</identifier><identifier>EISBN: 9781424479580</identifier><identifier>EISBN: 9781424479559</identifier><identifier>EISBN: 142447955X</identifier><identifier>DOI: 10.1109/CMCE.2010.5610339</identifier><language>eng</language><publisher>IEEE</publisher><subject>absolute error ; Biological system modeling ; Indexes ; inferential estimation ; melt index ; stacked neural networks ; Sun</subject><ispartof>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.3, p.216-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5610339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5610339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><title>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</title><addtitle>CMCE</addtitle><description>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</description><subject>absolute error</subject><subject>Biological system modeling</subject><subject>Indexes</subject><subject>inferential estimation</subject><subject>melt index</subject><subject>stacked neural networks</subject><subject>Sun</subject><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><isbn>1424479584</isbn><isbn>9781424479580</isbn><isbn>9781424479559</isbn><isbn>142447955X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFKAzEYhCMqWGsfQLzkBbb-STab5ChL1ULFS-8lu_lXYrfZNUnRvr0L1tPwDczADCH3DJaMgXms3-rVksOEsmIghLkgt6zkZamM1OUlWRil_1mJKzLjTJqiAl7dkEVKnwAgmNZa6Rn5WocOI4bsbU8xZX-w2Q-BDh0dh_40xmE89RiQHrDP1AeHP_SYfPigKdt2j44GPMYpGzB_D3GfaGPT5E4VtklDf8xIMcYh0jb6jNHbO3Ld2T7h4qxzsn1ebevXYvP-sq6fNoU3kAvdgpHGKWetlKVyuoNWK8W548IoyxuAsjJtqwyzUgtwpZJGcgfWQiurSszJw1-tR8TdGKdh8bQ7HyZ-AUsgXqk</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Luyue Xia</creator><creator>Haitian Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><author>Luyue Xia ; Haitian Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8c0959d7daa5547d8f0c87722d2397a2b00469cc791a5830d475952d0aa0c5663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>absolute error</topic><topic>Biological system modeling</topic><topic>Indexes</topic><topic>inferential estimation</topic><topic>melt index</topic><topic>stacked neural networks</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luyue Xia</au><au>Haitian Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</atitle><btitle>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</btitle><stitle>CMCE</stitle><date>2010-08</date><risdate>2010</risdate><volume>3</volume><spage>216</spage><epage>218</epage><pages>216-218</pages><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><eisbn>1424479584</eisbn><eisbn>9781424479580</eisbn><eisbn>9781424479559</eisbn><eisbn>142447955X</eisbn><abstract>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/CMCE.2010.5610339</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-6026
ispartof 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.3, p.216-218
issn 2159-6026
language eng
recordid cdi_ieee_primary_5610339
source IEEE Electronic Library (IEL) Conference Proceedings
subjects absolute error
Biological system modeling
Indexes
inferential estimation
melt index
stacked neural networks
Sun
title Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inferential%20estimation%20of%20polypropylene%20melt%20index%20using%20stacked%20neural%20networks%20based%20on%20absolute%20error%20criteria&rft.btitle=2010%20International%20Conference%20on%20Computer,%20Mechatronics,%20Control%20and%20Electronic%20Engineering&rft.au=Luyue%20Xia&rft.date=2010-08&rft.volume=3&rft.spage=216&rft.epage=218&rft.pages=216-218&rft.issn=2159-6026&rft.isbn=9781424479573&rft.isbn_list=1424479576&rft_id=info:doi/10.1109/CMCE.2010.5610339&rft_dat=%3Cieee_6IE%3E5610339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424479584&rft.eisbn_list=9781424479580&rft.eisbn_list=9781424479559&rft.eisbn_list=142447955X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5610339&rfr_iscdi=true