Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria
The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 216 |
container_title | |
container_volume | 3 |
creator | Luyue Xia Haitian Pan |
description | The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness. |
doi_str_mv | 10.1109/CMCE.2010.5610339 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5610339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5610339</ieee_id><sourcerecordid>5610339</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8c0959d7daa5547d8f0c87722d2397a2b00469cc791a5830d475952d0aa0c5663</originalsourceid><addsrcrecordid>eNo1kMFKAzEYhCMqWGsfQLzkBbb-STab5ChL1ULFS-8lu_lXYrfZNUnRvr0L1tPwDczADCH3DJaMgXms3-rVksOEsmIghLkgt6zkZamM1OUlWRil_1mJKzLjTJqiAl7dkEVKnwAgmNZa6Rn5WocOI4bsbU8xZX-w2Q-BDh0dh_40xmE89RiQHrDP1AeHP_SYfPigKdt2j44GPMYpGzB_D3GfaGPT5E4VtklDf8xIMcYh0jb6jNHbO3Ld2T7h4qxzsn1ebevXYvP-sq6fNoU3kAvdgpHGKWetlKVyuoNWK8W548IoyxuAsjJtqwyzUgtwpZJGcgfWQiurSszJw1-tR8TdGKdh8bQ7HyZ-AUsgXqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Luyue Xia ; Haitian Pan</creator><creatorcontrib>Luyue Xia ; Haitian Pan</creatorcontrib><description>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</description><identifier>ISSN: 2159-6026</identifier><identifier>ISBN: 9781424479573</identifier><identifier>ISBN: 1424479576</identifier><identifier>EISBN: 1424479584</identifier><identifier>EISBN: 9781424479580</identifier><identifier>EISBN: 9781424479559</identifier><identifier>EISBN: 142447955X</identifier><identifier>DOI: 10.1109/CMCE.2010.5610339</identifier><language>eng</language><publisher>IEEE</publisher><subject>absolute error ; Biological system modeling ; Indexes ; inferential estimation ; melt index ; stacked neural networks ; Sun</subject><ispartof>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.3, p.216-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5610339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5610339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><title>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</title><addtitle>CMCE</addtitle><description>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</description><subject>absolute error</subject><subject>Biological system modeling</subject><subject>Indexes</subject><subject>inferential estimation</subject><subject>melt index</subject><subject>stacked neural networks</subject><subject>Sun</subject><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><isbn>1424479584</isbn><isbn>9781424479580</isbn><isbn>9781424479559</isbn><isbn>142447955X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFKAzEYhCMqWGsfQLzkBbb-STab5ChL1ULFS-8lu_lXYrfZNUnRvr0L1tPwDczADCH3DJaMgXms3-rVksOEsmIghLkgt6zkZamM1OUlWRil_1mJKzLjTJqiAl7dkEVKnwAgmNZa6Rn5WocOI4bsbU8xZX-w2Q-BDh0dh_40xmE89RiQHrDP1AeHP_SYfPigKdt2j44GPMYpGzB_D3GfaGPT5E4VtklDf8xIMcYh0jb6jNHbO3Ld2T7h4qxzsn1ebevXYvP-sq6fNoU3kAvdgpHGKWetlKVyuoNWK8W548IoyxuAsjJtqwyzUgtwpZJGcgfWQiurSszJw1-tR8TdGKdh8bQ7HyZ-AUsgXqk</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Luyue Xia</creator><creator>Haitian Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</title><author>Luyue Xia ; Haitian Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8c0959d7daa5547d8f0c87722d2397a2b00469cc791a5830d475952d0aa0c5663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>absolute error</topic><topic>Biological system modeling</topic><topic>Indexes</topic><topic>inferential estimation</topic><topic>melt index</topic><topic>stacked neural networks</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luyue Xia</au><au>Haitian Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria</atitle><btitle>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</btitle><stitle>CMCE</stitle><date>2010-08</date><risdate>2010</risdate><volume>3</volume><spage>216</spage><epage>218</epage><pages>216-218</pages><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><eisbn>1424479584</eisbn><eisbn>9781424479580</eisbn><eisbn>9781424479559</eisbn><eisbn>142447955X</eisbn><abstract>The modeling approach of stacked neural networks based on absolute error criteria is proposed, and applied to inferential estimation of polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural network model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual neural networks based on absolute error criteria is proposed. For the purpose of comparison, single neural network models and stacked neural network models based on absolute error criteria are developed and evaluated. The application of the proposed modeling method to the development of melt index soft sensor in an industrial polypropylene polymerization plant demonstrates its effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/CMCE.2010.5610339</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-6026 |
ispartof | 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.3, p.216-218 |
issn | 2159-6026 |
language | eng |
recordid | cdi_ieee_primary_5610339 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | absolute error Biological system modeling Indexes inferential estimation melt index stacked neural networks Sun |
title | Inferential estimation of polypropylene melt index using stacked neural networks based on absolute error criteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inferential%20estimation%20of%20polypropylene%20melt%20index%20using%20stacked%20neural%20networks%20based%20on%20absolute%20error%20criteria&rft.btitle=2010%20International%20Conference%20on%20Computer,%20Mechatronics,%20Control%20and%20Electronic%20Engineering&rft.au=Luyue%20Xia&rft.date=2010-08&rft.volume=3&rft.spage=216&rft.epage=218&rft.pages=216-218&rft.issn=2159-6026&rft.isbn=9781424479573&rft.isbn_list=1424479576&rft_id=info:doi/10.1109/CMCE.2010.5610339&rft_dat=%3Cieee_6IE%3E5610339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424479584&rft.eisbn_list=9781424479580&rft.eisbn_list=9781424479559&rft.eisbn_list=142447955X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5610339&rfr_iscdi=true |