Optimal monitoring in large networks by Successive c-optimal Designs
We address the problem of optimizing the use of Network monitoring tools, such as Netflow, on a large IP network. We formulate a convex optimization problem which allows one to handle, in a unified framework, the combinatorial problem of selecting the "best" set of interfaces on which Netf...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sagnol, G Gaubert, S Bouhtou, M |
description | We address the problem of optimizing the use of Network monitoring tools, such as Netflow, on a large IP network. We formulate a convex optimization problem which allows one to handle, in a unified framework, the combinatorial problem of selecting the "best" set of interfaces on which Netflow should be activated, and the problem of finding the optimal sampling rates of the network-monitoring tool on these interfaces, when the aim is to infer the traffic on each internal Origin-Destination (OD) pair. We develop a new method, called "Successive c-optimal Design", which is much faster than the classical ones. It reduces to solving a stochastic sequence of Second Order Cone Programs. We give experimental results relying on real data from a commercial network, which show that our approach can be used to solve instances that were previously intractable, and we compare our method with previously proposed ones. |
doi_str_mv | 10.1109/ITC.2010.5608717 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5608717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5608717</ieee_id><sourcerecordid>5608717</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1327-e1e12467070fdff2d32a7ce66911bdb429d09d9e2525ce40829b95486e18d9953</originalsourceid><addsrcrecordid>eNo1jzFPwzAUhI0QElCyI7H4D6T4PduxPaIUSqVKHShzlcQvkSFNqjiA-u-JRLjl9A13umPsHsQSQLjHzT5fophIZ8IaMBcsccaCQqWslVpestt_MOKaJTF-iElKowF3w1a70xiORcuPfRfGfghdw0PH22JoiHc0_vTDZ-Tlmb99VRXFGL6JV2k_h1YUQ9PFO3ZVF22kZPYFe3953uev6Xa33uRP2zSARJMSEKDKjDCi9nWNXmJhKsoyB1D6UqHzwnlHqFFXpIRFVzqtbEZgvXNaLtjDX28gosNpmDYM58N8XP4C2kRLEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal monitoring in large networks by Successive c-optimal Designs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sagnol, G ; Gaubert, S ; Bouhtou, M</creator><creatorcontrib>Sagnol, G ; Gaubert, S ; Bouhtou, M</creatorcontrib><description>We address the problem of optimizing the use of Network monitoring tools, such as Netflow, on a large IP network. We formulate a convex optimization problem which allows one to handle, in a unified framework, the combinatorial problem of selecting the "best" set of interfaces on which Netflow should be activated, and the problem of finding the optimal sampling rates of the network-monitoring tool on these interfaces, when the aim is to infer the traffic on each internal Origin-Destination (OD) pair. We develop a new method, called "Successive c-optimal Design", which is much faster than the classical ones. It reduces to solving a stochastic sequence of Second Order Cone Programs. We give experimental results relying on real data from a commercial network, which show that our approach can be used to solve instances that were previously intractable, and we compare our method with previously proposed ones.</description><identifier>ISBN: 1424488370</identifier><identifier>ISBN: 9781424488377</identifier><identifier>EISBN: 9781424488353</identifier><identifier>EISBN: 1424488354</identifier><identifier>EISBN: 9781424488360</identifier><identifier>EISBN: 1424488362</identifier><identifier>DOI: 10.1109/ITC.2010.5608717</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Estimation ; Greedy algorithms ; Internet ; IP networks ; Monitoring ; Noise</subject><ispartof>2010 22nd International Teletraffic Congress (lTC 22), 2010, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5608717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5608717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sagnol, G</creatorcontrib><creatorcontrib>Gaubert, S</creatorcontrib><creatorcontrib>Bouhtou, M</creatorcontrib><title>Optimal monitoring in large networks by Successive c-optimal Designs</title><title>2010 22nd International Teletraffic Congress (lTC 22)</title><addtitle>ITC</addtitle><description>We address the problem of optimizing the use of Network monitoring tools, such as Netflow, on a large IP network. We formulate a convex optimization problem which allows one to handle, in a unified framework, the combinatorial problem of selecting the "best" set of interfaces on which Netflow should be activated, and the problem of finding the optimal sampling rates of the network-monitoring tool on these interfaces, when the aim is to infer the traffic on each internal Origin-Destination (OD) pair. We develop a new method, called "Successive c-optimal Design", which is much faster than the classical ones. It reduces to solving a stochastic sequence of Second Order Cone Programs. We give experimental results relying on real data from a commercial network, which show that our approach can be used to solve instances that were previously intractable, and we compare our method with previously proposed ones.</description><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Greedy algorithms</subject><subject>Internet</subject><subject>IP networks</subject><subject>Monitoring</subject><subject>Noise</subject><isbn>1424488370</isbn><isbn>9781424488377</isbn><isbn>9781424488353</isbn><isbn>1424488354</isbn><isbn>9781424488360</isbn><isbn>1424488362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jzFPwzAUhI0QElCyI7H4D6T4PduxPaIUSqVKHShzlcQvkSFNqjiA-u-JRLjl9A13umPsHsQSQLjHzT5fophIZ8IaMBcsccaCQqWslVpestt_MOKaJTF-iElKowF3w1a70xiORcuPfRfGfghdw0PH22JoiHc0_vTDZ-Tlmb99VRXFGL6JV2k_h1YUQ9PFO3ZVF22kZPYFe3953uev6Xa33uRP2zSARJMSEKDKjDCi9nWNXmJhKsoyB1D6UqHzwnlHqFFXpIRFVzqtbEZgvXNaLtjDX28gosNpmDYM58N8XP4C2kRLEw</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Sagnol, G</creator><creator>Gaubert, S</creator><creator>Bouhtou, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Optimal monitoring in large networks by Successive c-optimal Designs</title><author>Sagnol, G ; Gaubert, S ; Bouhtou, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1327-e1e12467070fdff2d32a7ce66911bdb429d09d9e2525ce40829b95486e18d9953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Greedy algorithms</topic><topic>Internet</topic><topic>IP networks</topic><topic>Monitoring</topic><topic>Noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Sagnol, G</creatorcontrib><creatorcontrib>Gaubert, S</creatorcontrib><creatorcontrib>Bouhtou, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sagnol, G</au><au>Gaubert, S</au><au>Bouhtou, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal monitoring in large networks by Successive c-optimal Designs</atitle><btitle>2010 22nd International Teletraffic Congress (lTC 22)</btitle><stitle>ITC</stitle><date>2010-09</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1424488370</isbn><isbn>9781424488377</isbn><eisbn>9781424488353</eisbn><eisbn>1424488354</eisbn><eisbn>9781424488360</eisbn><eisbn>1424488362</eisbn><abstract>We address the problem of optimizing the use of Network monitoring tools, such as Netflow, on a large IP network. We formulate a convex optimization problem which allows one to handle, in a unified framework, the combinatorial problem of selecting the "best" set of interfaces on which Netflow should be activated, and the problem of finding the optimal sampling rates of the network-monitoring tool on these interfaces, when the aim is to infer the traffic on each internal Origin-Destination (OD) pair. We develop a new method, called "Successive c-optimal Design", which is much faster than the classical ones. It reduces to solving a stochastic sequence of Second Order Cone Programs. We give experimental results relying on real data from a commercial network, which show that our approach can be used to solve instances that were previously intractable, and we compare our method with previously proposed ones.</abstract><pub>IEEE</pub><doi>10.1109/ITC.2010.5608717</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424488370 |
ispartof | 2010 22nd International Teletraffic Congress (lTC 22), 2010, p.1-8 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5608717 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Covariance matrix Estimation Greedy algorithms Internet IP networks Monitoring Noise |
title | Optimal monitoring in large networks by Successive c-optimal Designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20monitoring%20in%20large%20networks%20by%20Successive%20c-optimal%20Designs&rft.btitle=2010%2022nd%20International%20Teletraffic%20Congress%20(lTC%2022)&rft.au=Sagnol,%20G&rft.date=2010-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1424488370&rft.isbn_list=9781424488377&rft_id=info:doi/10.1109/ITC.2010.5608717&rft_dat=%3Cieee_6IE%3E5608717%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424488353&rft.eisbn_list=1424488354&rft.eisbn_list=9781424488360&rft.eisbn_list=1424488362&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5608717&rfr_iscdi=true |