A robust approach to ERP denoising

The purpose of presented study is to explore possibilities to increase the robustness and improve the performance of the spatial ERP denoising methods proposed in earlier research. The quality of the subspace separation solution may easily be degraded essentially, if the underlying assumptions becom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ivannikov, A, Kärkkäinen, T, Ristaniemi, T, Lyytinen, H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue
container_start_page 492
container_title
container_volume
creator Ivannikov, A
Kärkkäinen, T
Ristaniemi, T
Lyytinen, H
description The purpose of presented study is to explore possibilities to increase the robustness and improve the performance of the spatial ERP denoising methods proposed in earlier research. The quality of the subspace separation solution may easily be degraded essentially, if the underlying assumptions become noticeably violated, which is a normal situation in practice. The distortions to the results of a separation are caused by non-zero sample signal-noise and noise-noise correlations, which are indistinguishable from the variances of the signal and noise in the framework of the second-order statistical information exploited by the discussed methods. Therefore, in the research reported in this article we concentrate our efforts on finding the means that allow to reduce the erroneous influence of undesirable correlations on the performance of the discussed denoising methods.
doi_str_mv 10.1109/ISSPA.2010.5605606
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5605606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5605606</ieee_id><sourcerecordid>5605606</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-656af050532e0fb8dfd4d5a344316f1be37453136341d2d9260b0013f45a8bb03</originalsourceid><addsrcrecordid>eNo1j1FLwzAUhSMiqLN_QF-K75335t6kzWMZcw4GDrf3kZhEI7qWpj747y04DwcO38sHR4hbhDkimIf1brdt5xImVhqm6jNRmLpBlsw16lqfi-t_UPpSFDl_wBRWUhq-EvdtOXTuO4-l7fuhs6_v5diVy5dt6cOxSzkd327ERbSfORSnnYn943K_eKo2z6v1ot1UycBYTXYbQYEiGSC6xkfPXlliJtQRXaCaFSFpYvTSG6nBASBFVrZxDmgm7v60KYRw6If0ZYefw-kV_QKWOj25</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A robust approach to ERP denoising</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ivannikov, A ; Kärkkäinen, T ; Ristaniemi, T ; Lyytinen, H</creator><creatorcontrib>Ivannikov, A ; Kärkkäinen, T ; Ristaniemi, T ; Lyytinen, H</creatorcontrib><description>The purpose of presented study is to explore possibilities to increase the robustness and improve the performance of the spatial ERP denoising methods proposed in earlier research. The quality of the subspace separation solution may easily be degraded essentially, if the underlying assumptions become noticeably violated, which is a normal situation in practice. The distortions to the results of a separation are caused by non-zero sample signal-noise and noise-noise correlations, which are indistinguishable from the variances of the signal and noise in the framework of the second-order statistical information exploited by the discussed methods. Therefore, in the research reported in this article we concentrate our efforts on finding the means that allow to reduce the erroneous influence of undesirable correlations on the performance of the discussed denoising methods.</description><identifier>ISBN: 1424471656</identifier><identifier>ISBN: 9781424471652</identifier><identifier>EISBN: 9781424471676</identifier><identifier>EISBN: 1424471664</identifier><identifier>EISBN: 9781424471669</identifier><identifier>EISBN: 1424471672</identifier><identifier>DOI: 10.1109/ISSPA.2010.5605606</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Eigenvalues and eigenfunctions ; Noise reduction ; Robustness</subject><ispartof>10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, p.492-495</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5605606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5605606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ivannikov, A</creatorcontrib><creatorcontrib>Kärkkäinen, T</creatorcontrib><creatorcontrib>Ristaniemi, T</creatorcontrib><creatorcontrib>Lyytinen, H</creatorcontrib><title>A robust approach to ERP denoising</title><title>10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010)</title><addtitle>ISSPA</addtitle><description>The purpose of presented study is to explore possibilities to increase the robustness and improve the performance of the spatial ERP denoising methods proposed in earlier research. The quality of the subspace separation solution may easily be degraded essentially, if the underlying assumptions become noticeably violated, which is a normal situation in practice. The distortions to the results of a separation are caused by non-zero sample signal-noise and noise-noise correlations, which are indistinguishable from the variances of the signal and noise in the framework of the second-order statistical information exploited by the discussed methods. Therefore, in the research reported in this article we concentrate our efforts on finding the means that allow to reduce the erroneous influence of undesirable correlations on the performance of the discussed denoising methods.</description><subject>Correlation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Noise reduction</subject><subject>Robustness</subject><isbn>1424471656</isbn><isbn>9781424471652</isbn><isbn>9781424471676</isbn><isbn>1424471664</isbn><isbn>9781424471669</isbn><isbn>1424471672</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j1FLwzAUhSMiqLN_QF-K75335t6kzWMZcw4GDrf3kZhEI7qWpj747y04DwcO38sHR4hbhDkimIf1brdt5xImVhqm6jNRmLpBlsw16lqfi-t_UPpSFDl_wBRWUhq-EvdtOXTuO4-l7fuhs6_v5diVy5dt6cOxSzkd327ERbSfORSnnYn943K_eKo2z6v1ot1UycBYTXYbQYEiGSC6xkfPXlliJtQRXaCaFSFpYvTSG6nBASBFVrZxDmgm7v60KYRw6If0ZYefw-kV_QKWOj25</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ivannikov, A</creator><creator>Kärkkäinen, T</creator><creator>Ristaniemi, T</creator><creator>Lyytinen, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>A robust approach to ERP denoising</title><author>Ivannikov, A ; Kärkkäinen, T ; Ristaniemi, T ; Lyytinen, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-656af050532e0fb8dfd4d5a344316f1be37453136341d2d9260b0013f45a8bb03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Correlation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Noise reduction</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivannikov, A</creatorcontrib><creatorcontrib>Kärkkäinen, T</creatorcontrib><creatorcontrib>Ristaniemi, T</creatorcontrib><creatorcontrib>Lyytinen, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ivannikov, A</au><au>Kärkkäinen, T</au><au>Ristaniemi, T</au><au>Lyytinen, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A robust approach to ERP denoising</atitle><btitle>10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010)</btitle><stitle>ISSPA</stitle><date>2010-05</date><risdate>2010</risdate><spage>492</spage><epage>495</epage><pages>492-495</pages><isbn>1424471656</isbn><isbn>9781424471652</isbn><eisbn>9781424471676</eisbn><eisbn>1424471664</eisbn><eisbn>9781424471669</eisbn><eisbn>1424471672</eisbn><abstract>The purpose of presented study is to explore possibilities to increase the robustness and improve the performance of the spatial ERP denoising methods proposed in earlier research. The quality of the subspace separation solution may easily be degraded essentially, if the underlying assumptions become noticeably violated, which is a normal situation in practice. The distortions to the results of a separation are caused by non-zero sample signal-noise and noise-noise correlations, which are indistinguishable from the variances of the signal and noise in the framework of the second-order statistical information exploited by the discussed methods. Therefore, in the research reported in this article we concentrate our efforts on finding the means that allow to reduce the erroneous influence of undesirable correlations on the performance of the discussed denoising methods.</abstract><pub>IEEE</pub><doi>10.1109/ISSPA.2010.5605606</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424471656
ispartof 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, p.492-495
issn
language eng
recordid cdi_ieee_primary_5605606
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Correlation
Eigenvalues and eigenfunctions
Noise reduction
Robustness
title A robust approach to ERP denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20robust%20approach%20to%20ERP%20denoising&rft.btitle=10th%20International%20Conference%20on%20Information%20Science,%20Signal%20Processing%20and%20their%20Applications%20(ISSPA%202010)&rft.au=Ivannikov,%20A&rft.date=2010-05&rft.spage=492&rft.epage=495&rft.pages=492-495&rft.isbn=1424471656&rft.isbn_list=9781424471652&rft_id=info:doi/10.1109/ISSPA.2010.5605606&rft_dat=%3Cieee_6IE%3E5605606%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424471676&rft.eisbn_list=1424471664&rft.eisbn_list=9781424471669&rft.eisbn_list=1424471672&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5605606&rfr_iscdi=true