Language-Independent Clone Detection Applied to Plagiarism Detection
Clone detection is usually applied in the context of detecting small-to medium scale fragments of duplicated code in large software systems. In this paper, we address the problem of clone detection applied to plagiarism detection in the context of source code assignments done by computer science stu...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | |
container_volume | |
creator | Brixtel, Romain Fontaine, Mathieu Lesner, Boris Bazin, Cyril Robbes, Romain |
description | Clone detection is usually applied in the context of detecting small-to medium scale fragments of duplicated code in large software systems. In this paper, we address the problem of clone detection applied to plagiarism detection in the context of source code assignments done by computer science students. Plagiarism detection comes with a distinct set of constraints to usual clone detection approaches, which influenced the design of the approach we present in this paper. For instance, the source code can be heavily changed at a superficial level (in an attempt to look genuine), yet be functionally very similar. Since assignments turned in by computer science students can be in a variety of languages, we work at the syntactic level and do not consider the source-code semantics. Consequently, the approach we propose is endogenous and makes no assumption about the programming language being analysed. It is based on an alignment method using the parallel principle at local resolution (character level) to compute similarities between documents. We tested our framework on hundreds of real source files, involving a wide array of programming languages (Java, C, Python, PHP, Haskell, bash). Our approach allowed us to discover previously undetected frauds, and to empirically evaluate its accuracy and robustness. |
doi_str_mv | 10.1109/SCAM.2010.19 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5601829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5601829</ieee_id><sourcerecordid>oai_HAL_hal_01067165v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-84a0e3e6dd7d317a0617cce482516b0529a8196f939a08647bd1fa3054846a2f3</originalsourceid><addsrcrecordid>eNpFj81Lw0AQxRekoNbevHnJ1UPqzn7vMaRqCxEF9RymzSRdSZPQRMH_3oSKzuEN770fA8PYNfAlAPd3r2nytBR8sv6MLbx1oIRSzmhtZ-xyarwUHuQ5W_T9Bx9HaSG8vWCrDJvqEyuKN01BHY3SDFFatw1FKxpoN4S2iZKuqwMV0dBGLzVWAY-hP_z3V2xWYt3T4nfP2fvD_Vu6jrPnx02aZPFecD_ETiEnSaYobCHBIjdgdztSTmgwW66FRwfelF565M4ouy2gRMm1csqgKOWc3Z7u7rHOu2M44PE7bzHk6yTLp2x81Fgw-gtG9ubEBiL6g7Xh4ISXP7C7V2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Language-Independent Clone Detection Applied to Plagiarism Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brixtel, Romain ; Fontaine, Mathieu ; Lesner, Boris ; Bazin, Cyril ; Robbes, Romain</creator><creatorcontrib>Brixtel, Romain ; Fontaine, Mathieu ; Lesner, Boris ; Bazin, Cyril ; Robbes, Romain</creatorcontrib><description>Clone detection is usually applied in the context of detecting small-to medium scale fragments of duplicated code in large software systems. In this paper, we address the problem of clone detection applied to plagiarism detection in the context of source code assignments done by computer science students. Plagiarism detection comes with a distinct set of constraints to usual clone detection approaches, which influenced the design of the approach we present in this paper. For instance, the source code can be heavily changed at a superficial level (in an attempt to look genuine), yet be functionally very similar. Since assignments turned in by computer science students can be in a variety of languages, we work at the syntactic level and do not consider the source-code semantics. Consequently, the approach we propose is endogenous and makes no assumption about the programming language being analysed. It is based on an alignment method using the parallel principle at local resolution (character level) to compute similarities between documents. We tested our framework on hundreds of real source files, involving a wide array of programming languages (Java, C, Python, PHP, Haskell, bash). Our approach allowed us to discover previously undetected frauds, and to empirically evaluate its accuracy and robustness.</description><identifier>ISBN: 9781424486557</identifier><identifier>ISBN: 1424486556</identifier><identifier>DOI: 10.1109/SCAM.2010.19</identifier><identifier>LCCN: 2010932913</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloning ; Computer languages ; Computer Science ; Context ; Distance ; Document and Text Processing ; Endogenous ; Machine Learning ; Plagiarism ; Plagiarism Detection ; Robustness ; Similarity Measure ; Software systems ; Source Code Plagiarism ; Source Code Segmentation</subject><ispartof>2010 10th IEEE Working Conference on Source Code Analysis and Manipulation, 2010, p.77-86</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5601829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5601829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01067165$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brixtel, Romain</creatorcontrib><creatorcontrib>Fontaine, Mathieu</creatorcontrib><creatorcontrib>Lesner, Boris</creatorcontrib><creatorcontrib>Bazin, Cyril</creatorcontrib><creatorcontrib>Robbes, Romain</creatorcontrib><title>Language-Independent Clone Detection Applied to Plagiarism Detection</title><title>2010 10th IEEE Working Conference on Source Code Analysis and Manipulation</title><addtitle>scam</addtitle><description>Clone detection is usually applied in the context of detecting small-to medium scale fragments of duplicated code in large software systems. In this paper, we address the problem of clone detection applied to plagiarism detection in the context of source code assignments done by computer science students. Plagiarism detection comes with a distinct set of constraints to usual clone detection approaches, which influenced the design of the approach we present in this paper. For instance, the source code can be heavily changed at a superficial level (in an attempt to look genuine), yet be functionally very similar. Since assignments turned in by computer science students can be in a variety of languages, we work at the syntactic level and do not consider the source-code semantics. Consequently, the approach we propose is endogenous and makes no assumption about the programming language being analysed. It is based on an alignment method using the parallel principle at local resolution (character level) to compute similarities between documents. We tested our framework on hundreds of real source files, involving a wide array of programming languages (Java, C, Python, PHP, Haskell, bash). Our approach allowed us to discover previously undetected frauds, and to empirically evaluate its accuracy and robustness.</description><subject>Cloning</subject><subject>Computer languages</subject><subject>Computer Science</subject><subject>Context</subject><subject>Distance</subject><subject>Document and Text Processing</subject><subject>Endogenous</subject><subject>Machine Learning</subject><subject>Plagiarism</subject><subject>Plagiarism Detection</subject><subject>Robustness</subject><subject>Similarity Measure</subject><subject>Software systems</subject><subject>Source Code Plagiarism</subject><subject>Source Code Segmentation</subject><isbn>9781424486557</isbn><isbn>1424486556</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Lw0AQxRekoNbevHnJ1UPqzn7vMaRqCxEF9RymzSRdSZPQRMH_3oSKzuEN770fA8PYNfAlAPd3r2nytBR8sv6MLbx1oIRSzmhtZ-xyarwUHuQ5W_T9Bx9HaSG8vWCrDJvqEyuKN01BHY3SDFFatw1FKxpoN4S2iZKuqwMV0dBGLzVWAY-hP_z3V2xWYt3T4nfP2fvD_Vu6jrPnx02aZPFecD_ETiEnSaYobCHBIjdgdztSTmgwW66FRwfelF565M4ouy2gRMm1csqgKOWc3Z7u7rHOu2M44PE7bzHk6yTLp2x81Fgw-gtG9ubEBiL6g7Xh4ISXP7C7V2s</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Brixtel, Romain</creator><creator>Fontaine, Mathieu</creator><creator>Lesner, Boris</creator><creator>Bazin, Cyril</creator><creator>Robbes, Romain</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope></search><sort><creationdate>201009</creationdate><title>Language-Independent Clone Detection Applied to Plagiarism Detection</title><author>Brixtel, Romain ; Fontaine, Mathieu ; Lesner, Boris ; Bazin, Cyril ; Robbes, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-84a0e3e6dd7d317a0617cce482516b0529a8196f939a08647bd1fa3054846a2f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cloning</topic><topic>Computer languages</topic><topic>Computer Science</topic><topic>Context</topic><topic>Distance</topic><topic>Document and Text Processing</topic><topic>Endogenous</topic><topic>Machine Learning</topic><topic>Plagiarism</topic><topic>Plagiarism Detection</topic><topic>Robustness</topic><topic>Similarity Measure</topic><topic>Software systems</topic><topic>Source Code Plagiarism</topic><topic>Source Code Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Brixtel, Romain</creatorcontrib><creatorcontrib>Fontaine, Mathieu</creatorcontrib><creatorcontrib>Lesner, Boris</creatorcontrib><creatorcontrib>Bazin, Cyril</creatorcontrib><creatorcontrib>Robbes, Romain</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brixtel, Romain</au><au>Fontaine, Mathieu</au><au>Lesner, Boris</au><au>Bazin, Cyril</au><au>Robbes, Romain</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Language-Independent Clone Detection Applied to Plagiarism Detection</atitle><btitle>2010 10th IEEE Working Conference on Source Code Analysis and Manipulation</btitle><stitle>scam</stitle><date>2010-09</date><risdate>2010</risdate><spage>77</spage><epage>86</epage><pages>77-86</pages><isbn>9781424486557</isbn><isbn>1424486556</isbn><abstract>Clone detection is usually applied in the context of detecting small-to medium scale fragments of duplicated code in large software systems. In this paper, we address the problem of clone detection applied to plagiarism detection in the context of source code assignments done by computer science students. Plagiarism detection comes with a distinct set of constraints to usual clone detection approaches, which influenced the design of the approach we present in this paper. For instance, the source code can be heavily changed at a superficial level (in an attempt to look genuine), yet be functionally very similar. Since assignments turned in by computer science students can be in a variety of languages, we work at the syntactic level and do not consider the source-code semantics. Consequently, the approach we propose is endogenous and makes no assumption about the programming language being analysed. It is based on an alignment method using the parallel principle at local resolution (character level) to compute similarities between documents. We tested our framework on hundreds of real source files, involving a wide array of programming languages (Java, C, Python, PHP, Haskell, bash). Our approach allowed us to discover previously undetected frauds, and to empirically evaluate its accuracy and robustness.</abstract><pub>IEEE</pub><doi>10.1109/SCAM.2010.19</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424486557 |
ispartof | 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation, 2010, p.77-86 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5601829 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloning Computer languages Computer Science Context Distance Document and Text Processing Endogenous Machine Learning Plagiarism Plagiarism Detection Robustness Similarity Measure Software systems Source Code Plagiarism Source Code Segmentation |
title | Language-Independent Clone Detection Applied to Plagiarism Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Language-Independent%20Clone%20Detection%20Applied%20to%20Plagiarism%20Detection&rft.btitle=2010%2010th%20IEEE%20Working%20Conference%20on%20Source%20Code%20Analysis%20and%20Manipulation&rft.au=Brixtel,%20Romain&rft.date=2010-09&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.isbn=9781424486557&rft.isbn_list=1424486556&rft_id=info:doi/10.1109/SCAM.2010.19&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_01067165v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5601829&rfr_iscdi=true |