Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems

Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Júnior, Marcos Álvares B, de Lima Neto, F B, Fort, Julio César S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 25
container_title
container_volume
creator Júnior, Marcos Álvares B
de Lima Neto, F B
Fort, Julio César S
description Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.
doi_str_mv 10.1109/HIS.2010.5600020
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5600020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5600020</ieee_id><sourcerecordid>5600020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9368b84e88d99fcd8a95a3189971a742646588625e891704def1a9da99a39bc53</originalsourceid><addsrcrecordid>eNpFkE9Lw0AUxFdEUGvvgpf9Aqn7P_uOUtQGCh7MvbwkL2U1SUs2EdNPb60FTzO_YZjDMHYvxUJKAY-r7H2hxJGsE0IoccFupVHGpNpZuPwHra7ZPMaPY0kYqxTYG5Zn7b7ffYVuy4sGy09e7L75QHE4JRMf46_paOx3ST0eDhMvG4wx1IH6yLGreDs2Q0hwS93A4xQHauMdu6qxiTQ_64zlL8_5cpWs316z5dM6CSCGBLTzhTfkfQVQl5VHsKilB0glpkY546z3TlnyIFNhKqolQoUAqKEorZ6xh7_ZQESbfR9a7KfN-QT9A8K6UIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</creator><creatorcontrib>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</creatorcontrib><description>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</description><identifier>ISBN: 1424473632</identifier><identifier>ISBN: 9781424473632</identifier><identifier>EISBN: 1424473659</identifier><identifier>EISBN: 1424473640</identifier><identifier>EISBN: 9781424473656</identifier><identifier>EISBN: 9781424473649</identifier><identifier>DOI: 10.1109/HIS.2010.5600020</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; black box testing ; Computer architecture ; hybrid intelligent systems ; information security ; Network topology ; neuro-fuzzy classification ; Payloads ; Software ; software testing ; Testing ; Topology</subject><ispartof>2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5600020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5600020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Júnior, Marcos Álvares B</creatorcontrib><creatorcontrib>de Lima Neto, F B</creatorcontrib><creatorcontrib>Fort, Julio César S</creatorcontrib><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><title>2010 10th International Conference on Hybrid Intelligent Systems</title><addtitle>HIS</addtitle><description>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</description><subject>Artificial neural networks</subject><subject>black box testing</subject><subject>Computer architecture</subject><subject>hybrid intelligent systems</subject><subject>information security</subject><subject>Network topology</subject><subject>neuro-fuzzy classification</subject><subject>Payloads</subject><subject>Software</subject><subject>software testing</subject><subject>Testing</subject><subject>Topology</subject><isbn>1424473632</isbn><isbn>9781424473632</isbn><isbn>1424473659</isbn><isbn>1424473640</isbn><isbn>9781424473656</isbn><isbn>9781424473649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9Lw0AUxFdEUGvvgpf9Aqn7P_uOUtQGCh7MvbwkL2U1SUs2EdNPb60FTzO_YZjDMHYvxUJKAY-r7H2hxJGsE0IoccFupVHGpNpZuPwHra7ZPMaPY0kYqxTYG5Zn7b7ffYVuy4sGy09e7L75QHE4JRMf46_paOx3ST0eDhMvG4wx1IH6yLGreDs2Q0hwS93A4xQHauMdu6qxiTQ_64zlL8_5cpWs316z5dM6CSCGBLTzhTfkfQVQl5VHsKilB0glpkY546z3TlnyIFNhKqolQoUAqKEorZ6xh7_ZQESbfR9a7KfN-QT9A8K6UIw</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Júnior, Marcos Álvares B</creator><creator>de Lima Neto, F B</creator><creator>Fort, Julio César S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><author>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9368b84e88d99fcd8a95a3189971a742646588625e891704def1a9da99a39bc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>black box testing</topic><topic>Computer architecture</topic><topic>hybrid intelligent systems</topic><topic>information security</topic><topic>Network topology</topic><topic>neuro-fuzzy classification</topic><topic>Payloads</topic><topic>Software</topic><topic>software testing</topic><topic>Testing</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Júnior, Marcos Álvares B</creatorcontrib><creatorcontrib>de Lima Neto, F B</creatorcontrib><creatorcontrib>Fort, Julio César S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Júnior, Marcos Álvares B</au><au>de Lima Neto, F B</au><au>Fort, Julio César S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</atitle><btitle>2010 10th International Conference on Hybrid Intelligent Systems</btitle><stitle>HIS</stitle><date>2010-08</date><risdate>2010</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><isbn>1424473632</isbn><isbn>9781424473632</isbn><eisbn>1424473659</eisbn><eisbn>1424473640</eisbn><eisbn>9781424473656</eisbn><eisbn>9781424473649</eisbn><abstract>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</abstract><pub>IEEE</pub><doi>10.1109/HIS.2010.5600020</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424473632
ispartof 2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.25-30
issn
language eng
recordid cdi_ieee_primary_5600020
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
black box testing
Computer architecture
hybrid intelligent systems
information security
Network topology
neuro-fuzzy classification
Payloads
Software
software testing
Testing
Topology
title Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20black%20box%20testing%20by%20using%20neuro-fuzzy%20classifiers%20and%20multi-agent%20systems&rft.btitle=2010%2010th%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems&rft.au=Ju%CC%81nior,%20Marcos%20A%CC%81lvares%20B&rft.date=2010-08&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.isbn=1424473632&rft.isbn_list=9781424473632&rft_id=info:doi/10.1109/HIS.2010.5600020&rft_dat=%3Cieee_6IE%3E5600020%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424473659&rft.eisbn_list=1424473640&rft.eisbn_list=9781424473656&rft.eisbn_list=9781424473649&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5600020&rfr_iscdi=true