Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems
Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. T...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Júnior, Marcos Álvares B de Lima Neto, F B Fort, Julio César S |
description | Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques. |
doi_str_mv | 10.1109/HIS.2010.5600020 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5600020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5600020</ieee_id><sourcerecordid>5600020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9368b84e88d99fcd8a95a3189971a742646588625e891704def1a9da99a39bc53</originalsourceid><addsrcrecordid>eNpFkE9Lw0AUxFdEUGvvgpf9Aqn7P_uOUtQGCh7MvbwkL2U1SUs2EdNPb60FTzO_YZjDMHYvxUJKAY-r7H2hxJGsE0IoccFupVHGpNpZuPwHra7ZPMaPY0kYqxTYG5Zn7b7ffYVuy4sGy09e7L75QHE4JRMf46_paOx3ST0eDhMvG4wx1IH6yLGreDs2Q0hwS93A4xQHauMdu6qxiTQ_64zlL8_5cpWs316z5dM6CSCGBLTzhTfkfQVQl5VHsKilB0glpkY546z3TlnyIFNhKqolQoUAqKEorZ6xh7_ZQESbfR9a7KfN-QT9A8K6UIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</creator><creatorcontrib>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</creatorcontrib><description>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</description><identifier>ISBN: 1424473632</identifier><identifier>ISBN: 9781424473632</identifier><identifier>EISBN: 1424473659</identifier><identifier>EISBN: 1424473640</identifier><identifier>EISBN: 9781424473656</identifier><identifier>EISBN: 9781424473649</identifier><identifier>DOI: 10.1109/HIS.2010.5600020</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; black box testing ; Computer architecture ; hybrid intelligent systems ; information security ; Network topology ; neuro-fuzzy classification ; Payloads ; Software ; software testing ; Testing ; Topology</subject><ispartof>2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5600020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5600020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Júnior, Marcos Álvares B</creatorcontrib><creatorcontrib>de Lima Neto, F B</creatorcontrib><creatorcontrib>Fort, Julio César S</creatorcontrib><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><title>2010 10th International Conference on Hybrid Intelligent Systems</title><addtitle>HIS</addtitle><description>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</description><subject>Artificial neural networks</subject><subject>black box testing</subject><subject>Computer architecture</subject><subject>hybrid intelligent systems</subject><subject>information security</subject><subject>Network topology</subject><subject>neuro-fuzzy classification</subject><subject>Payloads</subject><subject>Software</subject><subject>software testing</subject><subject>Testing</subject><subject>Topology</subject><isbn>1424473632</isbn><isbn>9781424473632</isbn><isbn>1424473659</isbn><isbn>1424473640</isbn><isbn>9781424473656</isbn><isbn>9781424473649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9Lw0AUxFdEUGvvgpf9Aqn7P_uOUtQGCh7MvbwkL2U1SUs2EdNPb60FTzO_YZjDMHYvxUJKAY-r7H2hxJGsE0IoccFupVHGpNpZuPwHra7ZPMaPY0kYqxTYG5Zn7b7ffYVuy4sGy09e7L75QHE4JRMf46_paOx3ST0eDhMvG4wx1IH6yLGreDs2Q0hwS93A4xQHauMdu6qxiTQ_64zlL8_5cpWs316z5dM6CSCGBLTzhTfkfQVQl5VHsKilB0glpkY546z3TlnyIFNhKqolQoUAqKEorZ6xh7_ZQESbfR9a7KfN-QT9A8K6UIw</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Júnior, Marcos Álvares B</creator><creator>de Lima Neto, F B</creator><creator>Fort, Julio César S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</title><author>Júnior, Marcos Álvares B ; de Lima Neto, F B ; Fort, Julio César S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9368b84e88d99fcd8a95a3189971a742646588625e891704def1a9da99a39bc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>black box testing</topic><topic>Computer architecture</topic><topic>hybrid intelligent systems</topic><topic>information security</topic><topic>Network topology</topic><topic>neuro-fuzzy classification</topic><topic>Payloads</topic><topic>Software</topic><topic>software testing</topic><topic>Testing</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Júnior, Marcos Álvares B</creatorcontrib><creatorcontrib>de Lima Neto, F B</creatorcontrib><creatorcontrib>Fort, Julio César S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Júnior, Marcos Álvares B</au><au>de Lima Neto, F B</au><au>Fort, Julio César S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems</atitle><btitle>2010 10th International Conference on Hybrid Intelligent Systems</btitle><stitle>HIS</stitle><date>2010-08</date><risdate>2010</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><isbn>1424473632</isbn><isbn>9781424473632</isbn><eisbn>1424473659</eisbn><eisbn>1424473640</eisbn><eisbn>9781424473656</eisbn><eisbn>9781424473649</eisbn><abstract>Automated software testing has become a fundamental requirement for several software engineering methodologies. Software development companies very often outsource the test of their products. In such cases, the hired companies sometimes have to test softwares without any access to the source code. This type of service is called black box testing, which includes presentation of some ad-hoc input to the software followed by an assessment of the outcome. The common place for black box testing is sequential approach and slow pace of work. This ineffectiveness is due to the combinatorial explosion of software parameters and payloads. This work presents a neuro-fuzzy and multi-agent system architecture for improving black box testing tools for client-side vulnerability discovery, specifically, memory corruption flaws. Experiments show the efficiency of the proposed hybrid intelligent approach over traditional black box testing techniques.</abstract><pub>IEEE</pub><doi>10.1109/HIS.2010.5600020</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424473632 |
ispartof | 2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.25-30 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5600020 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks black box testing Computer architecture hybrid intelligent systems information security Network topology neuro-fuzzy classification Payloads Software software testing Testing Topology |
title | Improving black box testing by using neuro-fuzzy classifiers and multi-agent systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20black%20box%20testing%20by%20using%20neuro-fuzzy%20classifiers%20and%20multi-agent%20systems&rft.btitle=2010%2010th%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems&rft.au=Ju%CC%81nior,%20Marcos%20A%CC%81lvares%20B&rft.date=2010-08&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.isbn=1424473632&rft.isbn_list=9781424473632&rft_id=info:doi/10.1109/HIS.2010.5600020&rft_dat=%3Cieee_6IE%3E5600020%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424473659&rft.eisbn_list=1424473640&rft.eisbn_list=9781424473656&rft.eisbn_list=9781424473649&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5600020&rfr_iscdi=true |