The Binormal Assumption on Precision-Recall Curves
The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (R...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4266 |
---|---|
container_issue | |
container_start_page | 4263 |
container_title | |
container_volume | |
creator | Brodersen, K H Ong, C S Stephan, K E Buhmann, J M |
description | The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (ROC). The empirical PRC, however, turns out to be a highly imprecise estimate of the true curve, especially in the case of a small sample size and class imbalance in favour of negative examples. Ironically, this situation tends to occur precisely in those applications where the curve would be most useful, e.g., in anomaly detection or information retrieval. Here, we propose to estimate the PRC on the basis of a simple distributional assumption about the decision values that generalizes the established binormal model for estimating smooth ROC curves. Using simulations, we show that our approach outperforms empirical estimates, and that an account of the class imbalance is crucial for obtaining unbiased PRC estimates. |
doi_str_mv | 10.1109/ICPR.2010.1036 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597760</ieee_id><sourcerecordid>5597760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-58c94561abccccb9e149766645f29132c150396299f20f0923cdda45283a88863</originalsourceid><addsrcrecordid>eNo1j1tLAzEUhOMNXOu--uLL_oHUnJOcXB7r4qVQsJT6XLJpFgO7bdm0gv_eFXUYGD4GBoaxOxBTAOEe5vVyNUXxg0LqM1Y6Y0GhUoYUqHNWoJXAzYgX7Oa_QLxkBQgCrjTBNStzTo1AbbQhooLh-iNWj2m3H3rfVbOcT_3hmPa7avRyiCHlEfgqBt91VX0aPmO-ZVet73Is_3LC3p-f1vUrX7y9zOvZggdU-sjJBqdIg2_CqMZFUM5orRW16EBiABLSaXSuRdEKhzJst17R-MJba7WcsPvf3RRj3ByG1Pvha0PkjNFCfgMuhUcb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Binormal Assumption on Precision-Recall Curves</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brodersen, K H ; Ong, C S ; Stephan, K E ; Buhmann, J M</creator><creatorcontrib>Brodersen, K H ; Ong, C S ; Stephan, K E ; Buhmann, J M</creatorcontrib><description>The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (ROC). The empirical PRC, however, turns out to be a highly imprecise estimate of the true curve, especially in the case of a small sample size and class imbalance in favour of negative examples. Ironically, this situation tends to occur precisely in those applications where the curve would be most useful, e.g., in anomaly detection or information retrieval. Here, we propose to estimate the PRC on the basis of a simple distributional assumption about the decision values that generalizes the established binormal model for estimating smooth ROC curves. Using simulations, we show that our approach outperforms empirical estimates, and that an account of the class imbalance is crucial for obtaining unbiased PRC estimates.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.1036</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; classification performance ; Computational modeling ; Data models ; Estimation ; false discovery rate ; generalizability ; information retrieval ; Mathematical model ; Predictive models ; receiver operating characteristic ; Solid modeling</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.4263-4266</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-58c94561abccccb9e149766645f29132c150396299f20f0923cdda45283a88863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brodersen, K H</creatorcontrib><creatorcontrib>Ong, C S</creatorcontrib><creatorcontrib>Stephan, K E</creatorcontrib><creatorcontrib>Buhmann, J M</creatorcontrib><title>The Binormal Assumption on Precision-Recall Curves</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (ROC). The empirical PRC, however, turns out to be a highly imprecise estimate of the true curve, especially in the case of a small sample size and class imbalance in favour of negative examples. Ironically, this situation tends to occur precisely in those applications where the curve would be most useful, e.g., in anomaly detection or information retrieval. Here, we propose to estimate the PRC on the basis of a simple distributional assumption about the decision values that generalizes the established binormal model for estimating smooth ROC curves. Using simulations, we show that our approach outperforms empirical estimates, and that an account of the class imbalance is crucial for obtaining unbiased PRC estimates.</description><subject>Accuracy</subject><subject>classification performance</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Estimation</subject><subject>false discovery rate</subject><subject>generalizability</subject><subject>information retrieval</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>receiver operating characteristic</subject><subject>Solid modeling</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j1tLAzEUhOMNXOu--uLL_oHUnJOcXB7r4qVQsJT6XLJpFgO7bdm0gv_eFXUYGD4GBoaxOxBTAOEe5vVyNUXxg0LqM1Y6Y0GhUoYUqHNWoJXAzYgX7Oa_QLxkBQgCrjTBNStzTo1AbbQhooLh-iNWj2m3H3rfVbOcT_3hmPa7avRyiCHlEfgqBt91VX0aPmO-ZVet73Is_3LC3p-f1vUrX7y9zOvZggdU-sjJBqdIg2_CqMZFUM5orRW16EBiABLSaXSuRdEKhzJst17R-MJba7WcsPvf3RRj3ByG1Pvha0PkjNFCfgMuhUcb</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Brodersen, K H</creator><creator>Ong, C S</creator><creator>Stephan, K E</creator><creator>Buhmann, J M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>The Binormal Assumption on Precision-Recall Curves</title><author>Brodersen, K H ; Ong, C S ; Stephan, K E ; Buhmann, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-58c94561abccccb9e149766645f29132c150396299f20f0923cdda45283a88863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>classification performance</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Estimation</topic><topic>false discovery rate</topic><topic>generalizability</topic><topic>information retrieval</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>receiver operating characteristic</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Brodersen, K H</creatorcontrib><creatorcontrib>Ong, C S</creatorcontrib><creatorcontrib>Stephan, K E</creatorcontrib><creatorcontrib>Buhmann, J M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brodersen, K H</au><au>Ong, C S</au><au>Stephan, K E</au><au>Buhmann, J M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Binormal Assumption on Precision-Recall Curves</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>4263</spage><epage>4266</epage><pages>4263-4266</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (ROC). The empirical PRC, however, turns out to be a highly imprecise estimate of the true curve, especially in the case of a small sample size and class imbalance in favour of negative examples. Ironically, this situation tends to occur precisely in those applications where the curve would be most useful, e.g., in anomaly detection or information retrieval. Here, we propose to estimate the PRC on the basis of a simple distributional assumption about the decision values that generalizes the established binormal model for estimating smooth ROC curves. Using simulations, we show that our approach outperforms empirical estimates, and that an account of the class imbalance is crucial for obtaining unbiased PRC estimates.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.1036</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.4263-4266 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597760 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy classification performance Computational modeling Data models Estimation false discovery rate generalizability information retrieval Mathematical model Predictive models receiver operating characteristic Solid modeling |
title | The Binormal Assumption on Precision-Recall Curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Binormal%20Assumption%20on%20Precision-Recall%20Curves&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Brodersen,%20K%20H&rft.date=2010-08&rft.spage=4263&rft.epage=4266&rft.pages=4263-4266&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.1036&rft_dat=%3Cieee_6IE%3E5597760%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597760&rfr_iscdi=true |