Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring

Sleep-stage scoring plays an important role in analyzing the sleep patterns of people. Studies have revealed that Intensive Care Unit (ICU) patients do not usually get enough quality sleep, and hence, analyzing their sleep patterns is of increased importance. Due to the fact that sleep data are usua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khushaba, R N, Elliott, R, AlSukker, A, Al-Ani, A, McKinley, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 165
container_title
container_volume
creator Khushaba, R N
Elliott, R
AlSukker, A
Al-Ani, A
McKinley, S
description Sleep-stage scoring plays an important role in analyzing the sleep patterns of people. Studies have revealed that Intensive Care Unit (ICU) patients do not usually get enough quality sleep, and hence, analyzing their sleep patterns is of increased importance. Due to the fact that sleep data are usually collected from a number of Electroencephalogram (EEG), Electromyogram (EMG) and Electrooculography (EOG) channels, the feature set size can become large, which may affect the development of on-line scoring systems. Hence, a dimensionality reduction step is needed. One of the powerful dimensionality reduction approaches is based on the concept of Linear Discriminant Analysis (LDA). Unlike existing variants of LDA, this paper presents a new method that considers the fuzzy nature of input measurements while preserving their local structure. Practical results indicate the significance of preserving the local structure of sleep data, which is achieved by the proposed method, and hence attaining superior results to other dimensionality reduction methods.
doi_str_mv 10.1109/ICPR.2010.49
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597624</ieee_id><sourcerecordid>5597624</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-481759e2b87a73b0eb96b67d6adb07d231110db82e2d88f5dfe31eef8e90c0e23</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhNcvsNbcvHnZP5C6u9nPY4lWC4EW03vZTd7EhZiU7Cqkv96AehoeZhhmEHqgZEUpMU_bfP--YmRGbi5QYpSmnHGuBKf8Ei2YzmiqZrxCd_8GY9doQYmgKZeC3qIkBO8Ik0oqIcQC7Xdj_BjaobcdLobKdj5OuIQ--Oi_AW--zucJP_tQjf7T97aPeD1Hp-AD9j0uO4BTWkbbAi6rYfR9e49uGtsFSP50iQ6bl0P-lha7122-LlJvSEy5pkoYYE4rqzJHwBnppKqlrR1RNcvofLh2mgGrtW5E3UBGARoNhlQEWLZEj7-1HgCOp3mdHaejEEZJxrMfzYFTnw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khushaba, R N ; Elliott, R ; AlSukker, A ; Al-Ani, A ; McKinley, S</creator><creatorcontrib>Khushaba, R N ; Elliott, R ; AlSukker, A ; Al-Ani, A ; McKinley, S</creatorcontrib><description>Sleep-stage scoring plays an important role in analyzing the sleep patterns of people. Studies have revealed that Intensive Care Unit (ICU) patients do not usually get enough quality sleep, and hence, analyzing their sleep patterns is of increased importance. Due to the fact that sleep data are usually collected from a number of Electroencephalogram (EEG), Electromyogram (EMG) and Electrooculography (EOG) channels, the feature set size can become large, which may affect the development of on-line scoring systems. Hence, a dimensionality reduction step is needed. One of the powerful dimensionality reduction approaches is based on the concept of Linear Discriminant Analysis (LDA). Unlike existing variants of LDA, this paper presents a new method that considers the fuzzy nature of input measurements while preserving their local structure. Practical results indicate the significance of preserving the local structure of sleep data, which is achieved by the proposed method, and hence attaining superior results to other dimensionality reduction methods.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.49</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electroencephalography ; Electromyography ; Electrooculography ; Feature extraction ; Feature Projection ; Matrix decomposition ; Principal component analysis ; Sleep ; Sleep-Scoring</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.165-168</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khushaba, R N</creatorcontrib><creatorcontrib>Elliott, R</creatorcontrib><creatorcontrib>AlSukker, A</creatorcontrib><creatorcontrib>Al-Ani, A</creatorcontrib><creatorcontrib>McKinley, S</creatorcontrib><title>Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Sleep-stage scoring plays an important role in analyzing the sleep patterns of people. Studies have revealed that Intensive Care Unit (ICU) patients do not usually get enough quality sleep, and hence, analyzing their sleep patterns is of increased importance. Due to the fact that sleep data are usually collected from a number of Electroencephalogram (EEG), Electromyogram (EMG) and Electrooculography (EOG) channels, the feature set size can become large, which may affect the development of on-line scoring systems. Hence, a dimensionality reduction step is needed. One of the powerful dimensionality reduction approaches is based on the concept of Linear Discriminant Analysis (LDA). Unlike existing variants of LDA, this paper presents a new method that considers the fuzzy nature of input measurements while preserving their local structure. Practical results indicate the significance of preserving the local structure of sleep data, which is achieved by the proposed method, and hence attaining superior results to other dimensionality reduction methods.</description><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Feature extraction</subject><subject>Feature Projection</subject><subject>Matrix decomposition</subject><subject>Principal component analysis</subject><subject>Sleep</subject><subject>Sleep-Scoring</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j01Lw0AYhNcvsNbcvHnZP5C6u9nPY4lWC4EW03vZTd7EhZiU7Cqkv96AehoeZhhmEHqgZEUpMU_bfP--YmRGbi5QYpSmnHGuBKf8Ei2YzmiqZrxCd_8GY9doQYmgKZeC3qIkBO8Ik0oqIcQC7Xdj_BjaobcdLobKdj5OuIQ--Oi_AW--zucJP_tQjf7T97aPeD1Hp-AD9j0uO4BTWkbbAi6rYfR9e49uGtsFSP50iQ6bl0P-lha7122-LlJvSEy5pkoYYE4rqzJHwBnppKqlrR1RNcvofLh2mgGrtW5E3UBGARoNhlQEWLZEj7-1HgCOp3mdHaejEEZJxrMfzYFTnw</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Khushaba, R N</creator><creator>Elliott, R</creator><creator>AlSukker, A</creator><creator>Al-Ani, A</creator><creator>McKinley, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring</title><author>Khushaba, R N ; Elliott, R ; AlSukker, A ; Al-Ani, A ; McKinley, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-481759e2b87a73b0eb96b67d6adb07d231110db82e2d88f5dfe31eef8e90c0e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Feature extraction</topic><topic>Feature Projection</topic><topic>Matrix decomposition</topic><topic>Principal component analysis</topic><topic>Sleep</topic><topic>Sleep-Scoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Khushaba, R N</creatorcontrib><creatorcontrib>Elliott, R</creatorcontrib><creatorcontrib>AlSukker, A</creatorcontrib><creatorcontrib>Al-Ani, A</creatorcontrib><creatorcontrib>McKinley, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khushaba, R N</au><au>Elliott, R</au><au>AlSukker, A</au><au>Al-Ani, A</au><au>McKinley, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>165</spage><epage>168</epage><pages>165-168</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Sleep-stage scoring plays an important role in analyzing the sleep patterns of people. Studies have revealed that Intensive Care Unit (ICU) patients do not usually get enough quality sleep, and hence, analyzing their sleep patterns is of increased importance. Due to the fact that sleep data are usually collected from a number of Electroencephalogram (EEG), Electromyogram (EMG) and Electrooculography (EOG) channels, the feature set size can become large, which may affect the development of on-line scoring systems. Hence, a dimensionality reduction step is needed. One of the powerful dimensionality reduction approaches is based on the concept of Linear Discriminant Analysis (LDA). Unlike existing variants of LDA, this paper presents a new method that considers the fuzzy nature of input measurements while preserving their local structure. Practical results indicate the significance of preserving the local structure of sleep data, which is achieved by the proposed method, and hence attaining superior results to other dimensionality reduction methods.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.49</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.165-168
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597624
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electroencephalography
Electromyography
Electrooculography
Feature extraction
Feature Projection
Matrix decomposition
Principal component analysis
Sleep
Sleep-Scoring
title Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in Sleep-Stage Scoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Orthogonal%20Locality%20Sensitive%20Fuzzy%20Discriminant%20Analysis%20in%20Sleep-Stage%20Scoring&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Khushaba,%20R%20N&rft.date=2010-08&rft.spage=165&rft.epage=168&rft.pages=165-168&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.49&rft_dat=%3Cieee_6IE%3E5597624%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597624&rfr_iscdi=true