Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking
The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulate...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3512 |
---|---|
container_issue | |
container_start_page | 3508 |
container_title | |
container_volume | |
creator | Du Yong Kim Ehwa Yang Moongu Jeon Shin, Vladimir |
description | The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter. |
doi_str_mv | 10.1109/ICPR.2010.856 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597408</ieee_id><sourcerecordid>5597408</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c8e38e7c65c444720cf5d8b0061955c84abd620226b21278e0205f46843bdec23</originalsourceid><addsrcrecordid>eNpFT01LAzEUjF9grT168pI_sPXlbV6SPZZibaFgKcVrSbJZCa7dkmwP9de7oOJpZphhmGHsQcBUCKieVvPNdoowSEPqgk0qbYREKTVJIS_ZCE0pCj3IK3b3ZyBes5EAEoVUJG7ZJOfoAJVWmohGzG2DD3U8vPNll-JXd-DPuY-fto8DbbrEl2eXYs03NvXRt4EvYtuHlLk91Hx2PLbR_2e3nTvlnr_FfLIt3yXrP4bme3bT2DaHyS-O2W7xvJsvi_Xry2o-Wxexgr7wJpQmaK_Iy2E5gm-oNg5AiYrIG2ldrRAQlUOB2gRAoEYqI0tXB4_lmD3-1MYQwv6YhhPpvCeqtARTfgOTBVj9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</creator><creatorcontrib>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</creatorcontrib><description>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Filtering theory ; Kalman filtering ; Kalman filters ; Particle filter ; Particle filters ; Robustness ; Tracking ; Visual tracking ; Visualization</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3508-3512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du Yong Kim</creatorcontrib><creatorcontrib>Ehwa Yang</creatorcontrib><creatorcontrib>Moongu Jeon</creatorcontrib><creatorcontrib>Shin, Vladimir</creatorcontrib><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</description><subject>Filtering theory</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Particle filter</subject><subject>Particle filters</subject><subject>Robustness</subject><subject>Tracking</subject><subject>Visual tracking</subject><subject>Visualization</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT01LAzEUjF9grT168pI_sPXlbV6SPZZibaFgKcVrSbJZCa7dkmwP9de7oOJpZphhmGHsQcBUCKieVvPNdoowSEPqgk0qbYREKTVJIS_ZCE0pCj3IK3b3ZyBes5EAEoVUJG7ZJOfoAJVWmohGzG2DD3U8vPNll-JXd-DPuY-fto8DbbrEl2eXYs03NvXRt4EvYtuHlLk91Hx2PLbR_2e3nTvlnr_FfLIt3yXrP4bme3bT2DaHyS-O2W7xvJsvi_Xry2o-Wxexgr7wJpQmaK_Iy2E5gm-oNg5AiYrIG2ldrRAQlUOB2gRAoEYqI0tXB4_lmD3-1MYQwv6YhhPpvCeqtARTfgOTBVj9</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Du Yong Kim</creator><creator>Ehwa Yang</creator><creator>Moongu Jeon</creator><creator>Shin, Vladimir</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><author>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c8e38e7c65c444720cf5d8b0061955c84abd620226b21278e0205f46843bdec23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Filtering theory</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Particle filter</topic><topic>Particle filters</topic><topic>Robustness</topic><topic>Tracking</topic><topic>Visual tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Du Yong Kim</creatorcontrib><creatorcontrib>Ehwa Yang</creatorcontrib><creatorcontrib>Moongu Jeon</creatorcontrib><creatorcontrib>Shin, Vladimir</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du Yong Kim</au><au>Ehwa Yang</au><au>Moongu Jeon</au><au>Shin, Vladimir</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3508</spage><epage>3512</epage><pages>3508-3512</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.856</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.3508-3512 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597408 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Filtering theory Kalman filtering Kalman filters Particle filter Particle filters Robustness Tracking Visual tracking Visualization |
title | Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Receding%20Horizon%20Estimation%20for%20Hybrid%20Particle%20Filters%20and%20Application%20for%20Robust%20Visual%20Tracking&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Du%20Yong%20Kim&rft.date=2010-08&rft.spage=3508&rft.epage=3512&rft.pages=3508-3512&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.856&rft_dat=%3Cieee_6IE%3E5597408%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597408&rfr_iscdi=true |