Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking

The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Du Yong Kim, Ehwa Yang, Moongu Jeon, Shin, Vladimir
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3512
container_issue
container_start_page 3508
container_title
container_volume
creator Du Yong Kim
Ehwa Yang
Moongu Jeon
Shin, Vladimir
description The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.
doi_str_mv 10.1109/ICPR.2010.856
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597408</ieee_id><sourcerecordid>5597408</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c8e38e7c65c444720cf5d8b0061955c84abd620226b21278e0205f46843bdec23</originalsourceid><addsrcrecordid>eNpFT01LAzEUjF9grT168pI_sPXlbV6SPZZibaFgKcVrSbJZCa7dkmwP9de7oOJpZphhmGHsQcBUCKieVvPNdoowSEPqgk0qbYREKTVJIS_ZCE0pCj3IK3b3ZyBes5EAEoVUJG7ZJOfoAJVWmohGzG2DD3U8vPNll-JXd-DPuY-fto8DbbrEl2eXYs03NvXRt4EvYtuHlLk91Hx2PLbR_2e3nTvlnr_FfLIt3yXrP4bme3bT2DaHyS-O2W7xvJsvi_Xry2o-Wxexgr7wJpQmaK_Iy2E5gm-oNg5AiYrIG2ldrRAQlUOB2gRAoEYqI0tXB4_lmD3-1MYQwv6YhhPpvCeqtARTfgOTBVj9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</creator><creatorcontrib>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</creatorcontrib><description>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Filtering theory ; Kalman filtering ; Kalman filters ; Particle filter ; Particle filters ; Robustness ; Tracking ; Visual tracking ; Visualization</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3508-3512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du Yong Kim</creatorcontrib><creatorcontrib>Ehwa Yang</creatorcontrib><creatorcontrib>Moongu Jeon</creatorcontrib><creatorcontrib>Shin, Vladimir</creatorcontrib><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</description><subject>Filtering theory</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Particle filter</subject><subject>Particle filters</subject><subject>Robustness</subject><subject>Tracking</subject><subject>Visual tracking</subject><subject>Visualization</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT01LAzEUjF9grT168pI_sPXlbV6SPZZibaFgKcVrSbJZCa7dkmwP9de7oOJpZphhmGHsQcBUCKieVvPNdoowSEPqgk0qbYREKTVJIS_ZCE0pCj3IK3b3ZyBes5EAEoVUJG7ZJOfoAJVWmohGzG2DD3U8vPNll-JXd-DPuY-fto8DbbrEl2eXYs03NvXRt4EvYtuHlLk91Hx2PLbR_2e3nTvlnr_FfLIt3yXrP4bme3bT2DaHyS-O2W7xvJsvi_Xry2o-Wxexgr7wJpQmaK_Iy2E5gm-oNg5AiYrIG2ldrRAQlUOB2gRAoEYqI0tXB4_lmD3-1MYQwv6YhhPpvCeqtARTfgOTBVj9</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Du Yong Kim</creator><creator>Ehwa Yang</creator><creator>Moongu Jeon</creator><creator>Shin, Vladimir</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</title><author>Du Yong Kim ; Ehwa Yang ; Moongu Jeon ; Shin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c8e38e7c65c444720cf5d8b0061955c84abd620226b21278e0205f46843bdec23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Filtering theory</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Particle filter</topic><topic>Particle filters</topic><topic>Robustness</topic><topic>Tracking</topic><topic>Visual tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Du Yong Kim</creatorcontrib><creatorcontrib>Ehwa Yang</creatorcontrib><creatorcontrib>Moongu Jeon</creatorcontrib><creatorcontrib>Shin, Vladimir</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du Yong Kim</au><au>Ehwa Yang</au><au>Moongu Jeon</au><au>Shin, Vladimir</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3508</spage><epage>3512</epage><pages>3508-3512</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The receding horizon estimation is applied to design robust visual trackers. Most recent data within the fixed size of windows is receding, and is processed to obtain an estimate of the object state at the current time. In visual tracking such a scheme improves filter accuracy by avoiding accumulated approximation errors. A newly derived unscented Kalman filter (UKF) based on the receding horizon strategy is proposed for determining the importance density of the hybrid particle filter. The importance density derived by the receding horizon-based UKF (RHUKF) provides significantly improved accuracy and performance consistency compared to the unscented particle filter (UPF). Visual tracking examples are subsequently tested to demonstrate the advantages of the filter.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.856</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.3508-3512
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597408
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Filtering theory
Kalman filtering
Kalman filters
Particle filter
Particle filters
Robustness
Tracking
Visual tracking
Visualization
title Receding Horizon Estimation for Hybrid Particle Filters and Application for Robust Visual Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Receding%20Horizon%20Estimation%20for%20Hybrid%20Particle%20Filters%20and%20Application%20for%20Robust%20Visual%20Tracking&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Du%20Yong%20Kim&rft.date=2010-08&rft.spage=3508&rft.epage=3512&rft.pages=3508-3512&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.856&rft_dat=%3Cieee_6IE%3E5597408%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597408&rfr_iscdi=true