Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for Image Segmentation

In this paper, a parametric and unsupervised histogram-based image segmentation method is presented. The histogram is assumed to be a mixture of asymmetric generalized Gaussian distributions. The mixture parameters are estimated by using the Expectation Maximization algorithm. Histogram fitting and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nacereddine, N, Tabbone, S, Ziou, Djemel, Hamami, L
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a parametric and unsupervised histogram-based image segmentation method is presented. The histogram is assumed to be a mixture of asymmetric generalized Gaussian distributions. The mixture parameters are estimated by using the Expectation Maximization algorithm. Histogram fitting and region uniformity measures on synthetic and real images reveal the effectiveness of the proposed model compared to the generalized Gaussian mixture model.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2010.1107