Dynamic Hand Pose Recognition Using Depth Data

Hand pose recognition has been a problem of great interest to the Computer Vision and Human Computer Interaction community for many years and the current solutions either require additional accessories at the user end or enormous computation time. These limitations arise mainly due to the high dexte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suryanarayan, Poonam, Subramanian, Anbumani, Mandalapu, Dinesh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3108
container_issue
container_start_page 3105
container_title
container_volume
creator Suryanarayan, Poonam
Subramanian, Anbumani
Mandalapu, Dinesh
description Hand pose recognition has been a problem of great interest to the Computer Vision and Human Computer Interaction community for many years and the current solutions either require additional accessories at the user end or enormous computation time. These limitations arise mainly due to the high dexterity of human hand and occlusions created in the limited view of the camera. This work utilizes the depth information and a novel algorithm to recognize scale and rotation invariant hand poses dynamically. We have designed a volumetric shape descriptor enfolding the hand to generate a 3D cylindrical histogram and achieved robust pose recognition in real time.
doi_str_mv 10.1109/ICPR.2010.760
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597253</ieee_id><sourcerecordid>5597253</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-75d24b354e0ceb3c4f67ff59758a21df474101a63f9a0973e0d615260647d9183</originalsourceid><addsrcrecordid>eNo1jE1Lw0AUANcvMNYcPXnZP5D43u57u9mjJNUWCpZSz2WTbOqCTUqTS_-9BfU0DAMjxBNCjgjuZVmuN7mCi1oDVyJ1tkBSRJYJ6VokqtCY2YveiIf_oNStSBAYMzKM9yIdx1iDMtZYZk5EXp17f4iNXPi-lethDHITmmHfxykOvfwcY7-XVThOX7Lyk38Ud53_HkP6x5nYvs235SJbfbwvy9dVFh1MmeVWUa2ZAjSh1g11xnYdO8uFV9h2ZAkBvdGd8-CsDtAaZGXAkG0dFnomnn-3MYSwO57iwZ_OO74cFGv9Ax3uRL8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Hand Pose Recognition Using Depth Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suryanarayan, Poonam ; Subramanian, Anbumani ; Mandalapu, Dinesh</creator><creatorcontrib>Suryanarayan, Poonam ; Subramanian, Anbumani ; Mandalapu, Dinesh</creatorcontrib><description>Hand pose recognition has been a problem of great interest to the Computer Vision and Human Computer Interaction community for many years and the current solutions either require additional accessories at the user end or enormous computation time. These limitations arise mainly due to the high dexterity of human hand and occlusions created in the limited view of the camera. This work utilizes the depth information and a novel algorithm to recognize scale and rotation invariant hand poses dynamically. We have designed a volumetric shape descriptor enfolding the hand to generate a 3D cylindrical histogram and achieved robust pose recognition in real time.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.760</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Depth Camera ; Gesture ; Principal component analysis ; Real time systems ; Shape ; Shape Descriptor ; SVM ; Three dimensional displays ; Thumb ; Training</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3105-3108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suryanarayan, Poonam</creatorcontrib><creatorcontrib>Subramanian, Anbumani</creatorcontrib><creatorcontrib>Mandalapu, Dinesh</creatorcontrib><title>Dynamic Hand Pose Recognition Using Depth Data</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Hand pose recognition has been a problem of great interest to the Computer Vision and Human Computer Interaction community for many years and the current solutions either require additional accessories at the user end or enormous computation time. These limitations arise mainly due to the high dexterity of human hand and occlusions created in the limited view of the camera. This work utilizes the depth information and a novel algorithm to recognize scale and rotation invariant hand poses dynamically. We have designed a volumetric shape descriptor enfolding the hand to generate a 3D cylindrical histogram and achieved robust pose recognition in real time.</description><subject>Cameras</subject><subject>Depth Camera</subject><subject>Gesture</subject><subject>Principal component analysis</subject><subject>Real time systems</subject><subject>Shape</subject><subject>Shape Descriptor</subject><subject>SVM</subject><subject>Three dimensional displays</subject><subject>Thumb</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jE1Lw0AUANcvMNYcPXnZP5D43u57u9mjJNUWCpZSz2WTbOqCTUqTS_-9BfU0DAMjxBNCjgjuZVmuN7mCi1oDVyJ1tkBSRJYJ6VokqtCY2YveiIf_oNStSBAYMzKM9yIdx1iDMtZYZk5EXp17f4iNXPi-lethDHITmmHfxykOvfwcY7-XVThOX7Lyk38Ud53_HkP6x5nYvs235SJbfbwvy9dVFh1MmeVWUa2ZAjSh1g11xnYdO8uFV9h2ZAkBvdGd8-CsDtAaZGXAkG0dFnomnn-3MYSwO57iwZ_OO74cFGv9Ax3uRL8</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Suryanarayan, Poonam</creator><creator>Subramanian, Anbumani</creator><creator>Mandalapu, Dinesh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Dynamic Hand Pose Recognition Using Depth Data</title><author>Suryanarayan, Poonam ; Subramanian, Anbumani ; Mandalapu, Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-75d24b354e0ceb3c4f67ff59758a21df474101a63f9a0973e0d615260647d9183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Depth Camera</topic><topic>Gesture</topic><topic>Principal component analysis</topic><topic>Real time systems</topic><topic>Shape</topic><topic>Shape Descriptor</topic><topic>SVM</topic><topic>Three dimensional displays</topic><topic>Thumb</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Suryanarayan, Poonam</creatorcontrib><creatorcontrib>Subramanian, Anbumani</creatorcontrib><creatorcontrib>Mandalapu, Dinesh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suryanarayan, Poonam</au><au>Subramanian, Anbumani</au><au>Mandalapu, Dinesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Hand Pose Recognition Using Depth Data</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3105</spage><epage>3108</epage><pages>3105-3108</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Hand pose recognition has been a problem of great interest to the Computer Vision and Human Computer Interaction community for many years and the current solutions either require additional accessories at the user end or enormous computation time. These limitations arise mainly due to the high dexterity of human hand and occlusions created in the limited view of the camera. This work utilizes the depth information and a novel algorithm to recognize scale and rotation invariant hand poses dynamically. We have designed a volumetric shape descriptor enfolding the hand to generate a 3D cylindrical histogram and achieved robust pose recognition in real time.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.760</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.3105-3108
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597253
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Depth Camera
Gesture
Principal component analysis
Real time systems
Shape
Shape Descriptor
SVM
Three dimensional displays
Thumb
Training
title Dynamic Hand Pose Recognition Using Depth Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Hand%20Pose%20Recognition%20Using%20Depth%20Data&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Suryanarayan,%20Poonam&rft.date=2010-08&rft.spage=3105&rft.epage=3108&rft.pages=3105-3108&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.760&rft_dat=%3Cieee_6IE%3E5597253%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597253&rfr_iscdi=true