How to Measure Biometric Information?

Being able to measure the actual information content of biometrics is very important but also a challenging problem. Main difficulty here is not only related to the selected feature representation of the biometric data, but also related to the matching algorithm employed in biometric systems. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sutcu, Yagiz, Sencar, Husrev T, Memon, Nasir
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue
container_start_page 1469
container_title
container_volume
creator Sutcu, Yagiz
Sencar, Husrev T
Memon, Nasir
description Being able to measure the actual information content of biometrics is very important but also a challenging problem. Main difficulty here is not only related to the selected feature representation of the biometric data, but also related to the matching algorithm employed in biometric systems. In this paper, we propose a new measure for measuring biometric information using relative entropy between intra-user and inter-user distance distributions. As an example, we evaluated the proposed measure on a face image dataset.
doi_str_mv 10.1109/ICPR.2010.363
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597172</ieee_id><sourcerecordid>5597172</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f552490815204962434d605da22cfc4cf8fbfbd74d212f05abec76cbbc8300ae3</originalsourceid><addsrcrecordid>eNo1jE1LxDAUAOMXWNcePXnpxWPX917ykvYkblG3sKLI3pckTSBgt9JWxH_vgnoahoER4gphiQj1bdu8vi0JDiq1PBJ5bSpUpJRhhepYZFRJLM1BT8TFfyA6FRkCY6k047nIpyk5IG20YeZM3KyHr2Ieiudgp88xFKs09GEeky_afRzG3s5p2N9dirNo36eQ_3Ehto8P22Zdbl6e2uZ-U6Ya5jIyk6qhQiZQtSYlVaeBO0vko1c-VtFF1xnVEVIEti54o71zvpIANsiFuP7dphDC7mNMvR2_d8y1QUPyB5rvQx4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>How to Measure Biometric Information?</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sutcu, Yagiz ; Sencar, Husrev T ; Memon, Nasir</creator><creatorcontrib>Sutcu, Yagiz ; Sencar, Husrev T ; Memon, Nasir</creatorcontrib><description>Being able to measure the actual information content of biometrics is very important but also a challenging problem. Main difficulty here is not only related to the selected feature representation of the biometric data, but also related to the matching algorithm employed in biometric systems. In this paper, we propose a new measure for measuring biometric information using relative entropy between intra-user and inter-user distance distributions. As an example, we evaluated the proposed measure on a face image dataset.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.363</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Bioinformatics ; biometric information ; Entropy ; Estimation ; Face ; Principal component analysis ; relative entropy</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.1469-1472</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sutcu, Yagiz</creatorcontrib><creatorcontrib>Sencar, Husrev T</creatorcontrib><creatorcontrib>Memon, Nasir</creatorcontrib><title>How to Measure Biometric Information?</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Being able to measure the actual information content of biometrics is very important but also a challenging problem. Main difficulty here is not only related to the selected feature representation of the biometric data, but also related to the matching algorithm employed in biometric systems. In this paper, we propose a new measure for measuring biometric information using relative entropy between intra-user and inter-user distance distributions. As an example, we evaluated the proposed measure on a face image dataset.</description><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>biometric information</subject><subject>Entropy</subject><subject>Estimation</subject><subject>Face</subject><subject>Principal component analysis</subject><subject>relative entropy</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jE1LxDAUAOMXWNcePXnpxWPX917ykvYkblG3sKLI3pckTSBgt9JWxH_vgnoahoER4gphiQj1bdu8vi0JDiq1PBJ5bSpUpJRhhepYZFRJLM1BT8TFfyA6FRkCY6k047nIpyk5IG20YeZM3KyHr2Ieiudgp88xFKs09GEeky_afRzG3s5p2N9dirNo36eQ_3Ehto8P22Zdbl6e2uZ-U6Ya5jIyk6qhQiZQtSYlVaeBO0vko1c-VtFF1xnVEVIEti54o71zvpIANsiFuP7dphDC7mNMvR2_d8y1QUPyB5rvQx4</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Sutcu, Yagiz</creator><creator>Sencar, Husrev T</creator><creator>Memon, Nasir</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>How to Measure Biometric Information?</title><author>Sutcu, Yagiz ; Sencar, Husrev T ; Memon, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f552490815204962434d605da22cfc4cf8fbfbd74d212f05abec76cbbc8300ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>biometric information</topic><topic>Entropy</topic><topic>Estimation</topic><topic>Face</topic><topic>Principal component analysis</topic><topic>relative entropy</topic><toplevel>online_resources</toplevel><creatorcontrib>Sutcu, Yagiz</creatorcontrib><creatorcontrib>Sencar, Husrev T</creatorcontrib><creatorcontrib>Memon, Nasir</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sutcu, Yagiz</au><au>Sencar, Husrev T</au><au>Memon, Nasir</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>How to Measure Biometric Information?</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>1469</spage><epage>1472</epage><pages>1469-1472</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Being able to measure the actual information content of biometrics is very important but also a challenging problem. Main difficulty here is not only related to the selected feature representation of the biometric data, but also related to the matching algorithm employed in biometric systems. In this paper, we propose a new measure for measuring biometric information using relative entropy between intra-user and inter-user distance distributions. As an example, we evaluated the proposed measure on a face image dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.363</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.1469-1472
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597172
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Bioinformatics
biometric information
Entropy
Estimation
Face
Principal component analysis
relative entropy
title How to Measure Biometric Information?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=How%20to%20Measure%20Biometric%20Information?&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Sutcu,%20Yagiz&rft.date=2010-08&rft.spage=1469&rft.epage=1472&rft.pages=1469-1472&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.363&rft_dat=%3Cieee_6IE%3E5597172%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597172&rfr_iscdi=true