Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition
Offline handwriting recognition (OHR) is an extremely challenging task because of many factors including variations in writing style, writing device and material, and noise in the scanning and collection process. Due to the diverse nature of the above challenges, it is highly unlikely that a single...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2864 |
---|---|
container_issue | |
container_start_page | 2861 |
container_title | |
container_volume | |
creator | Prasad, Rohit Kamali, Matin Belanger, David Rosti, Antti-Veikko Matsoukas, Spyros Natarajan, Prem |
description | Offline handwriting recognition (OHR) is an extremely challenging task because of many factors including variations in writing style, writing device and material, and noise in the scanning and collection process. Due to the diverse nature of the above challenges, it is highly unlikely that a single recognition technique can address all the characteristics of real-world handwritten documents. Therefore, one must consider designing different systems, each addressing specific challenges in the handwritten corpus, and then combining the hypotheses from these diverse systems. To that end, we present an innovative approach for combining hypotheses from multiple handwriting recognition systems. Our approach is based on generating a consensus network using hypotheses from a diverse set of handwriting recognition systems. Next, we decode the consensus network for producing the best possible hypothesis given an error criterion. Experimental results on an Arabic OHR task show that our combination algorithm outperforms the NIST ROVER technique and results in a 7% relative reduction in the word error rate over the single best OHR system. |
doi_str_mv | 10.1109/ICPR.2010.701 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597041</ieee_id><sourcerecordid>5597041</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-44c5f8c251e9652bede97e476294f7b298e660233787b1431dad698b05d261213</originalsourceid><addsrcrecordid>eNo1jMtOwzAUBc1LIpQsWbHxD6T4On7EyxIBrVRRVHXDqrKTm2LR2lUcVPXvKQJWo9EcHULugI0BmHmY1W_LMWcn1QzOSG50BYILoaUAcU4yXpVQ6JNekJv_wPklyYBJKISScE3ylLxjXGmlpZQZea9jSBjSV6KvOBxi_0kfbcKWTo_7OHxgwkTruHM-2MHHQLvY00lvnW_oouu2PiCd2tAeej_4sKFLbOIm-J_pLbnq7DZh_scRWT0_reppMV-8zOrJvPCGDYUQjeyqhktAoyR32KLRKLTiRnTacVOhUoyXpa60A1FCa1tlKsdkyxVwKEfk_vfWI-J63_ud7Y9rKY1mAspvOeJVxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Prasad, Rohit ; Kamali, Matin ; Belanger, David ; Rosti, Antti-Veikko ; Matsoukas, Spyros ; Natarajan, Prem</creator><creatorcontrib>Prasad, Rohit ; Kamali, Matin ; Belanger, David ; Rosti, Antti-Veikko ; Matsoukas, Spyros ; Natarajan, Prem</creatorcontrib><description>Offline handwriting recognition (OHR) is an extremely challenging task because of many factors including variations in writing style, writing device and material, and noise in the scanning and collection process. Due to the diverse nature of the above challenges, it is highly unlikely that a single recognition technique can address all the characteristics of real-world handwritten documents. Therefore, one must consider designing different systems, each addressing specific challenges in the handwritten corpus, and then combining the hypotheses from these diverse systems. To that end, we present an innovative approach for combining hypotheses from multiple handwriting recognition systems. Our approach is based on generating a consensus network using hypotheses from a diverse set of handwriting recognition systems. Next, we decode the consensus network for producing the best possible hypothesis given an error criterion. Experimental results on an Arabic OHR task show that our combination algorithm outperforms the NIST ROVER technique and results in a 7% relative reduction in the word error rate over the single best OHR system.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.701</identifier><language>eng</language><publisher>IEEE</publisher><subject>consensus network ; Decoding ; Error analysis ; handwriting ; Handwriting recognition ; Hidden Markov models ; Lattices ; NIST ; OCR ; ROVER ; Speech recognition ; system combination</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2861-2864</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prasad, Rohit</creatorcontrib><creatorcontrib>Kamali, Matin</creatorcontrib><creatorcontrib>Belanger, David</creatorcontrib><creatorcontrib>Rosti, Antti-Veikko</creatorcontrib><creatorcontrib>Matsoukas, Spyros</creatorcontrib><creatorcontrib>Natarajan, Prem</creatorcontrib><title>Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Offline handwriting recognition (OHR) is an extremely challenging task because of many factors including variations in writing style, writing device and material, and noise in the scanning and collection process. Due to the diverse nature of the above challenges, it is highly unlikely that a single recognition technique can address all the characteristics of real-world handwritten documents. Therefore, one must consider designing different systems, each addressing specific challenges in the handwritten corpus, and then combining the hypotheses from these diverse systems. To that end, we present an innovative approach for combining hypotheses from multiple handwriting recognition systems. Our approach is based on generating a consensus network using hypotheses from a diverse set of handwriting recognition systems. Next, we decode the consensus network for producing the best possible hypothesis given an error criterion. Experimental results on an Arabic OHR task show that our combination algorithm outperforms the NIST ROVER technique and results in a 7% relative reduction in the word error rate over the single best OHR system.</description><subject>consensus network</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>handwriting</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Lattices</subject><subject>NIST</subject><subject>OCR</subject><subject>ROVER</subject><subject>Speech recognition</subject><subject>system combination</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMtOwzAUBc1LIpQsWbHxD6T4On7EyxIBrVRRVHXDqrKTm2LR2lUcVPXvKQJWo9EcHULugI0BmHmY1W_LMWcn1QzOSG50BYILoaUAcU4yXpVQ6JNekJv_wPklyYBJKISScE3ylLxjXGmlpZQZea9jSBjSV6KvOBxi_0kfbcKWTo_7OHxgwkTruHM-2MHHQLvY00lvnW_oouu2PiCd2tAeej_4sKFLbOIm-J_pLbnq7DZh_scRWT0_reppMV-8zOrJvPCGDYUQjeyqhktAoyR32KLRKLTiRnTacVOhUoyXpa60A1FCa1tlKsdkyxVwKEfk_vfWI-J63_ud7Y9rKY1mAspvOeJVxg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Prasad, Rohit</creator><creator>Kamali, Matin</creator><creator>Belanger, David</creator><creator>Rosti, Antti-Veikko</creator><creator>Matsoukas, Spyros</creator><creator>Natarajan, Prem</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition</title><author>Prasad, Rohit ; Kamali, Matin ; Belanger, David ; Rosti, Antti-Veikko ; Matsoukas, Spyros ; Natarajan, Prem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-44c5f8c251e9652bede97e476294f7b298e660233787b1431dad698b05d261213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>consensus network</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>handwriting</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Lattices</topic><topic>NIST</topic><topic>OCR</topic><topic>ROVER</topic><topic>Speech recognition</topic><topic>system combination</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Rohit</creatorcontrib><creatorcontrib>Kamali, Matin</creatorcontrib><creatorcontrib>Belanger, David</creatorcontrib><creatorcontrib>Rosti, Antti-Veikko</creatorcontrib><creatorcontrib>Matsoukas, Spyros</creatorcontrib><creatorcontrib>Natarajan, Prem</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prasad, Rohit</au><au>Kamali, Matin</au><au>Belanger, David</au><au>Rosti, Antti-Veikko</au><au>Matsoukas, Spyros</au><au>Natarajan, Prem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2861</spage><epage>2864</epage><pages>2861-2864</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Offline handwriting recognition (OHR) is an extremely challenging task because of many factors including variations in writing style, writing device and material, and noise in the scanning and collection process. Due to the diverse nature of the above challenges, it is highly unlikely that a single recognition technique can address all the characteristics of real-world handwritten documents. Therefore, one must consider designing different systems, each addressing specific challenges in the handwritten corpus, and then combining the hypotheses from these diverse systems. To that end, we present an innovative approach for combining hypotheses from multiple handwriting recognition systems. Our approach is based on generating a consensus network using hypotheses from a diverse set of handwriting recognition systems. Next, we decode the consensus network for producing the best possible hypothesis given an error criterion. Experimental results on an Arabic OHR task show that our combination algorithm outperforms the NIST ROVER technique and results in a 7% relative reduction in the word error rate over the single best OHR system.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.701</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.2861-2864 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597041 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | consensus network Decoding Error analysis handwriting Handwriting recognition Hidden Markov models Lattices NIST OCR ROVER Speech recognition system combination |
title | Consensus Network Based Hypotheses Combination for Arabic Offline Handwriting Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Consensus%20Network%20Based%20Hypotheses%20Combination%20for%20Arabic%20Offline%20Handwriting%20Recognition&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Prasad,%20Rohit&rft.date=2010-08&rft.spage=2861&rft.epage=2864&rft.pages=2861-2864&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.701&rft_dat=%3Cieee_6IE%3E5597041%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597041&rfr_iscdi=true |