A new approach for history matching of oil and gas reservoir

This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Miyoshi, S C, Szwarcman, D M, Vellasco, M M B R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Miyoshi, S C
Szwarcman, D M
Vellasco, M M B R
description This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.
doi_str_mv 10.1109/IJCNN.2010.5596789
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596789</ieee_id><sourcerecordid>5596789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c29c8da0f7665ed21d9594d03c8731c735c7b49168b6c5055243b4579de2273</originalsourceid><addsrcrecordid>eNo1kMtqAjEYhdMbVK0v0G7yAmPz5zo_dCNDLxaxG_eSyWScFJ1IMrT49hWqq8Phg4_DIeQR2AyA4fPis1qtZpydulKoTYlXZAySS6kRDFyTEQcNhZTM3JApmvLCNNxemEBxT8Y5fzPGBaIYkZc57f0vtYdDitZ1tI2JdiEPMR3p3g6uC_2WxpbGsKO2b-jWZpp89uknhvRA7lq7y356zglZv72uq49i-fW-qObLIoBRQyEdR1c2lrVGa-UbDg0qlA0TrjQCnBHKmVqelpa1doopxaWopTLYeM6NmJCnf23w3m8OKextOm7OJ4g_cstKpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new approach for history matching of oil and gas reservoir</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</creator><creatorcontrib>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</creatorcontrib><description>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424469161</identifier><identifier>ISBN: 1424469163</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424469171</identifier><identifier>EISBN: 9781424469178</identifier><identifier>EISBN: 142446918X</identifier><identifier>EISBN: 9781424469185</identifier><identifier>DOI: 10.1109/IJCNN.2010.5596789</identifier><language>eng</language><publisher>IEEE</publisher><subject>History ; Kernel ; Permeability ; Petroleum ; Principal component analysis ; Production ; Reservoirs</subject><ispartof>The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Miyoshi, S C</creatorcontrib><creatorcontrib>Szwarcman, D M</creatorcontrib><creatorcontrib>Vellasco, M M B R</creatorcontrib><title>A new approach for history matching of oil and gas reservoir</title><title>The 2010 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</description><subject>History</subject><subject>Kernel</subject><subject>Permeability</subject><subject>Petroleum</subject><subject>Principal component analysis</subject><subject>Production</subject><subject>Reservoirs</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424469161</isbn><isbn>1424469163</isbn><isbn>1424469171</isbn><isbn>9781424469178</isbn><isbn>142446918X</isbn><isbn>9781424469185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqAjEYhdMbVK0v0G7yAmPz5zo_dCNDLxaxG_eSyWScFJ1IMrT49hWqq8Phg4_DIeQR2AyA4fPis1qtZpydulKoTYlXZAySS6kRDFyTEQcNhZTM3JApmvLCNNxemEBxT8Y5fzPGBaIYkZc57f0vtYdDitZ1tI2JdiEPMR3p3g6uC_2WxpbGsKO2b-jWZpp89uknhvRA7lq7y356zglZv72uq49i-fW-qObLIoBRQyEdR1c2lrVGa-UbDg0qlA0TrjQCnBHKmVqelpa1doopxaWopTLYeM6NmJCnf23w3m8OKextOm7OJ4g_cstKpA</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Miyoshi, S C</creator><creator>Szwarcman, D M</creator><creator>Vellasco, M M B R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>A new approach for history matching of oil and gas reservoir</title><author>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c29c8da0f7665ed21d9594d03c8731c735c7b49168b6c5055243b4579de2273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>History</topic><topic>Kernel</topic><topic>Permeability</topic><topic>Petroleum</topic><topic>Principal component analysis</topic><topic>Production</topic><topic>Reservoirs</topic><toplevel>online_resources</toplevel><creatorcontrib>Miyoshi, S C</creatorcontrib><creatorcontrib>Szwarcman, D M</creatorcontrib><creatorcontrib>Vellasco, M M B R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miyoshi, S C</au><au>Szwarcman, D M</au><au>Vellasco, M M B R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach for history matching of oil and gas reservoir</atitle><btitle>The 2010 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424469161</isbn><isbn>1424469163</isbn><eisbn>1424469171</eisbn><eisbn>9781424469178</eisbn><eisbn>142446918X</eisbn><eisbn>9781424469185</eisbn><abstract>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2010.5596789</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_5596789
source IEEE Electronic Library (IEL) Conference Proceedings
subjects History
Kernel
Permeability
Petroleum
Principal component analysis
Production
Reservoirs
title A new approach for history matching of oil and gas reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20for%20history%20matching%20of%20oil%20and%20gas%20reservoir&rft.btitle=The%202010%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Miyoshi,%20S%20C&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424469161&rft.isbn_list=1424469163&rft_id=info:doi/10.1109/IJCNN.2010.5596789&rft_dat=%3Cieee_6IE%3E5596789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469171&rft.eisbn_list=9781424469178&rft.eisbn_list=142446918X&rft.eisbn_list=9781424469185&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596789&rfr_iscdi=true