A new approach for history matching of oil and gas reservoir
This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Be...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Miyoshi, S C Szwarcman, D M Vellasco, M M B R |
description | This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics. |
doi_str_mv | 10.1109/IJCNN.2010.5596789 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596789</ieee_id><sourcerecordid>5596789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c29c8da0f7665ed21d9594d03c8731c735c7b49168b6c5055243b4579de2273</originalsourceid><addsrcrecordid>eNo1kMtqAjEYhdMbVK0v0G7yAmPz5zo_dCNDLxaxG_eSyWScFJ1IMrT49hWqq8Phg4_DIeQR2AyA4fPis1qtZpydulKoTYlXZAySS6kRDFyTEQcNhZTM3JApmvLCNNxemEBxT8Y5fzPGBaIYkZc57f0vtYdDitZ1tI2JdiEPMR3p3g6uC_2WxpbGsKO2b-jWZpp89uknhvRA7lq7y356zglZv72uq49i-fW-qObLIoBRQyEdR1c2lrVGa-UbDg0qlA0TrjQCnBHKmVqelpa1doopxaWopTLYeM6NmJCnf23w3m8OKextOm7OJ4g_cstKpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new approach for history matching of oil and gas reservoir</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</creator><creatorcontrib>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</creatorcontrib><description>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424469161</identifier><identifier>ISBN: 1424469163</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424469171</identifier><identifier>EISBN: 9781424469178</identifier><identifier>EISBN: 142446918X</identifier><identifier>EISBN: 9781424469185</identifier><identifier>DOI: 10.1109/IJCNN.2010.5596789</identifier><language>eng</language><publisher>IEEE</publisher><subject>History ; Kernel ; Permeability ; Petroleum ; Principal component analysis ; Production ; Reservoirs</subject><ispartof>The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Miyoshi, S C</creatorcontrib><creatorcontrib>Szwarcman, D M</creatorcontrib><creatorcontrib>Vellasco, M M B R</creatorcontrib><title>A new approach for history matching of oil and gas reservoir</title><title>The 2010 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</description><subject>History</subject><subject>Kernel</subject><subject>Permeability</subject><subject>Petroleum</subject><subject>Principal component analysis</subject><subject>Production</subject><subject>Reservoirs</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424469161</isbn><isbn>1424469163</isbn><isbn>1424469171</isbn><isbn>9781424469178</isbn><isbn>142446918X</isbn><isbn>9781424469185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqAjEYhdMbVK0v0G7yAmPz5zo_dCNDLxaxG_eSyWScFJ1IMrT49hWqq8Phg4_DIeQR2AyA4fPis1qtZpydulKoTYlXZAySS6kRDFyTEQcNhZTM3JApmvLCNNxemEBxT8Y5fzPGBaIYkZc57f0vtYdDitZ1tI2JdiEPMR3p3g6uC_2WxpbGsKO2b-jWZpp89uknhvRA7lq7y356zglZv72uq49i-fW-qObLIoBRQyEdR1c2lrVGa-UbDg0qlA0TrjQCnBHKmVqelpa1doopxaWopTLYeM6NmJCnf23w3m8OKextOm7OJ4g_cstKpA</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Miyoshi, S C</creator><creator>Szwarcman, D M</creator><creator>Vellasco, M M B R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>A new approach for history matching of oil and gas reservoir</title><author>Miyoshi, S C ; Szwarcman, D M ; Vellasco, M M B R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c29c8da0f7665ed21d9594d03c8731c735c7b49168b6c5055243b4579de2273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>History</topic><topic>Kernel</topic><topic>Permeability</topic><topic>Petroleum</topic><topic>Principal component analysis</topic><topic>Production</topic><topic>Reservoirs</topic><toplevel>online_resources</toplevel><creatorcontrib>Miyoshi, S C</creatorcontrib><creatorcontrib>Szwarcman, D M</creatorcontrib><creatorcontrib>Vellasco, M M B R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miyoshi, S C</au><au>Szwarcman, D M</au><au>Vellasco, M M B R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach for history matching of oil and gas reservoir</atitle><btitle>The 2010 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424469161</isbn><isbn>1424469163</isbn><eisbn>1424469171</eisbn><eisbn>9781424469178</eisbn><eisbn>142446918X</eisbn><eisbn>9781424469185</eisbn><abstract>This work proposes a new approach for history matching using Kernel PCA to adjust the reservoir permeability field obeying geostatistical constraint. Although there are several methodologies in literature for history matching, most of them don't take into account geostatistical restrictions. Besides, history matching is a problem of huge dimensionality. So, Kernel PCA was chosen due to its ability to compress and accurately reconstruct data in addition to being able to extract non-linear characteristics.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2010.5596789</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_5596789 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | History Kernel Permeability Petroleum Principal component analysis Production Reservoirs |
title | A new approach for history matching of oil and gas reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20for%20history%20matching%20of%20oil%20and%20gas%20reservoir&rft.btitle=The%202010%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Miyoshi,%20S%20C&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424469161&rft.isbn_list=1424469163&rft_id=info:doi/10.1109/IJCNN.2010.5596789&rft_dat=%3Cieee_6IE%3E5596789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469171&rft.eisbn_list=9781424469178&rft.eisbn_list=142446918X&rft.eisbn_list=9781424469185&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596789&rfr_iscdi=true |