A clustering ensemble method for clustering mixed data
This paper presents a clustering ensemble method based on our novel three-staged clustering algorithm. A clustering ensemble is a paradigm that seeks to best combine the outputs of several clustering algorithms with a decision fusion function to achieve a more accurate and stable final output. Our e...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Al-Shaqsi, Jamil Wenjia Wang |
description | This paper presents a clustering ensemble method based on our novel three-staged clustering algorithm. A clustering ensemble is a paradigm that seeks to best combine the outputs of several clustering algorithms with a decision fusion function to achieve a more accurate and stable final output. Our ensemble is constructed with our proposed clustering algorithm as a core modelling method that is used to generate a series of clustering results with different conditions for a given dataset. Then, a decision aggregation mechanism such as voting is employed to find a combined partition of the different clusters. The voting mechanism considered only experimental results that produce intra-similarity value higher than the average intra-similarity value for a particular interval. The aim of this procedure is to find a clustering result that minimizes the number of disagreements between different clustering results. Our ensemble method has been tested on 11 benchmark datasets and compared with some individual methods including TwoStep, k-means, squeezer, k-prototype and some ensemble based methods including k-ANMI, ccdByEnsemble, SIPR, and SICM. The experimental results showed its strengths over the compared clustering algorithms. |
doi_str_mv | 10.1109/IJCNN.2010.5596684 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596684</ieee_id><sourcerecordid>5596684</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bab76f443f9bf5f7c88c82291ab445919e29934ad1819728b6d930c33d36f8183</originalsourceid><addsrcrecordid>eNpNj8tqwzAQRdUXNEnzA-3GP-BEo5ElzTKYPlJCsmnXQbJGrYudFNuF9u8baAJdXS4HDvcKcQtyBiBpvnwu1-uZkodeFGSM02diDFppbQgsnIuRAgO51tJeiClZd2IGLk8MCa_FuO8_pFRIhCNhFlnVfPUDd_XuLeNdz21oOGt5eN_HLO27_7itvzlm0Q_-Rlwl3_Q8PeZEvD7cv5RP-WrzuCwXq7wGWwx58MGapDUmCqlItnKuckoR-KB1QUCsDiu0j-CArHLBREJZIUY0yYHDibj789bMvP3s6tZ3P9vjf_wFFi9JeA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A clustering ensemble method for clustering mixed data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Al-Shaqsi, Jamil ; Wenjia Wang</creator><creatorcontrib>Al-Shaqsi, Jamil ; Wenjia Wang</creatorcontrib><description>This paper presents a clustering ensemble method based on our novel three-staged clustering algorithm. A clustering ensemble is a paradigm that seeks to best combine the outputs of several clustering algorithms with a decision fusion function to achieve a more accurate and stable final output. Our ensemble is constructed with our proposed clustering algorithm as a core modelling method that is used to generate a series of clustering results with different conditions for a given dataset. Then, a decision aggregation mechanism such as voting is employed to find a combined partition of the different clusters. The voting mechanism considered only experimental results that produce intra-similarity value higher than the average intra-similarity value for a particular interval. The aim of this procedure is to find a clustering result that minimizes the number of disagreements between different clustering results. Our ensemble method has been tested on 11 benchmark datasets and compared with some individual methods including TwoStep, k-means, squeezer, k-prototype and some ensemble based methods including k-ANMI, ccdByEnsemble, SIPR, and SICM. The experimental results showed its strengths over the compared clustering algorithms.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424469161</identifier><identifier>ISBN: 1424469163</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424469171</identifier><identifier>EISBN: 9781424469178</identifier><identifier>EISBN: 142446918X</identifier><identifier>EISBN: 9781424469185</identifier><identifier>DOI: 10.1109/IJCNN.2010.5596684</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Aggregates ; Cancer ; Clustering algorithms ; Equations ; Mathematical model ; Partitioning algorithms</subject><ispartof>The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Shaqsi, Jamil</creatorcontrib><creatorcontrib>Wenjia Wang</creatorcontrib><title>A clustering ensemble method for clustering mixed data</title><title>The 2010 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>This paper presents a clustering ensemble method based on our novel three-staged clustering algorithm. A clustering ensemble is a paradigm that seeks to best combine the outputs of several clustering algorithms with a decision fusion function to achieve a more accurate and stable final output. Our ensemble is constructed with our proposed clustering algorithm as a core modelling method that is used to generate a series of clustering results with different conditions for a given dataset. Then, a decision aggregation mechanism such as voting is employed to find a combined partition of the different clusters. The voting mechanism considered only experimental results that produce intra-similarity value higher than the average intra-similarity value for a particular interval. The aim of this procedure is to find a clustering result that minimizes the number of disagreements between different clustering results. Our ensemble method has been tested on 11 benchmark datasets and compared with some individual methods including TwoStep, k-means, squeezer, k-prototype and some ensemble based methods including k-ANMI, ccdByEnsemble, SIPR, and SICM. The experimental results showed its strengths over the compared clustering algorithms.</description><subject>Accuracy</subject><subject>Aggregates</subject><subject>Cancer</subject><subject>Clustering algorithms</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Partitioning algorithms</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424469161</isbn><isbn>1424469163</isbn><isbn>1424469171</isbn><isbn>9781424469178</isbn><isbn>142446918X</isbn><isbn>9781424469185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNj8tqwzAQRdUXNEnzA-3GP-BEo5ElzTKYPlJCsmnXQbJGrYudFNuF9u8baAJdXS4HDvcKcQtyBiBpvnwu1-uZkodeFGSM02diDFppbQgsnIuRAgO51tJeiClZd2IGLk8MCa_FuO8_pFRIhCNhFlnVfPUDd_XuLeNdz21oOGt5eN_HLO27_7itvzlm0Q_-Rlwl3_Q8PeZEvD7cv5RP-WrzuCwXq7wGWwx58MGapDUmCqlItnKuckoR-KB1QUCsDiu0j-CArHLBREJZIUY0yYHDibj789bMvP3s6tZ3P9vjf_wFFi9JeA</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Al-Shaqsi, Jamil</creator><creator>Wenjia Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>A clustering ensemble method for clustering mixed data</title><author>Al-Shaqsi, Jamil ; Wenjia Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bab76f443f9bf5f7c88c82291ab445919e29934ad1819728b6d930c33d36f8183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Aggregates</topic><topic>Cancer</topic><topic>Clustering algorithms</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Shaqsi, Jamil</creatorcontrib><creatorcontrib>Wenjia Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Shaqsi, Jamil</au><au>Wenjia Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A clustering ensemble method for clustering mixed data</atitle><btitle>The 2010 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424469161</isbn><isbn>1424469163</isbn><eisbn>1424469171</eisbn><eisbn>9781424469178</eisbn><eisbn>142446918X</eisbn><eisbn>9781424469185</eisbn><abstract>This paper presents a clustering ensemble method based on our novel three-staged clustering algorithm. A clustering ensemble is a paradigm that seeks to best combine the outputs of several clustering algorithms with a decision fusion function to achieve a more accurate and stable final output. Our ensemble is constructed with our proposed clustering algorithm as a core modelling method that is used to generate a series of clustering results with different conditions for a given dataset. Then, a decision aggregation mechanism such as voting is employed to find a combined partition of the different clusters. The voting mechanism considered only experimental results that produce intra-similarity value higher than the average intra-similarity value for a particular interval. The aim of this procedure is to find a clustering result that minimizes the number of disagreements between different clustering results. Our ensemble method has been tested on 11 benchmark datasets and compared with some individual methods including TwoStep, k-means, squeezer, k-prototype and some ensemble based methods including k-ANMI, ccdByEnsemble, SIPR, and SICM. The experimental results showed its strengths over the compared clustering algorithms.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2010.5596684</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_5596684 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Aggregates Cancer Clustering algorithms Equations Mathematical model Partitioning algorithms |
title | A clustering ensemble method for clustering mixed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20clustering%20ensemble%20method%20for%20clustering%20mixed%20data&rft.btitle=The%202010%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Al-Shaqsi,%20Jamil&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424469161&rft.isbn_list=1424469163&rft_id=info:doi/10.1109/IJCNN.2010.5596684&rft_dat=%3Cieee_6IE%3E5596684%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469171&rft.eisbn_list=9781424469178&rft.eisbn_list=142446918X&rft.eisbn_list=9781424469185&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596684&rfr_iscdi=true |