Extending Self-Organizing Maps with uncertainty information of probabilistic PCA

We introduce a probabilistic version of the self-organizing map (SOM) where we model the uncertainty of both the model vectors and the data. While uncertainty information about the data is often not available, this property becomes very useful when the method is combined in a hierarchical manner wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sovilj, Dusan, Raiko, Tapani, Oja, Erkki
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Sovilj, Dusan
Raiko, Tapani
Oja, Erkki
description We introduce a probabilistic version of the self-organizing map (SOM) where we model the uncertainty of both the model vectors and the data. While uncertainty information about the data is often not available, this property becomes very useful when the method is combined in a hierarchical manner with probabilistic principal component analysis (PCA), where we do estimate uncertainty of the principal components and the weights. We apply the hierarchical model to the domain of collaborative filtering, where probabilistic PCA is a popular approach due to its robustness for tackling many missing values in the data. The main focus in this paper is for recommendation systems about movies, where the movie rating data matrix of size people times movies is available, but contains lots of missing values. The matrix is first decomposed into a matrix product of people times features and features times movies by PCA. Then we apply the probabilistic SOM to both of those matrices separately. The uncertainty is large when a person (or a movie) has only a few ratings. The experiments with Movielens and Netflix data show an improvement over traditional SOM.
doi_str_mv 10.1109/IJCNN.2010.5596578
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596578</ieee_id><sourcerecordid>5596578</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b3c6d7875b012bf72e49ac2d2bc04075b56768d8502ad66e1401defa90b0d1b23</originalsourceid><addsrcrecordid>eNo1kMtOAjEYhestEZAX0E1fYLB_r9MlmYBiEEjUNWmnHawZOmSmRvHpxQirky9fcpJzELoFMgIg-n72VCwWI0oOLISWQuVnqA-cci41KDhHPQoSMs6JukBDrfKTk3B5ckyza9Tvug9CKNOa9dBq8p18dCFu8Iuvq2zZbkwMP3_8bHYd_grpHX_G0rfJhJj2OMSqabcmhSbipsK7trHGhjp0KZR4VYxv0FVl6s4PjzlAb9PJa_GYzZcPs2I8zwIokTLLSulUroQlQG2lqOfalNRRW5LDAmGFVDJ3uSDUOCk9cALOV0YTSxxYygbo7r83eO_XuzZsTbtfH59hv7XFU-E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extending Self-Organizing Maps with uncertainty information of probabilistic PCA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sovilj, Dusan ; Raiko, Tapani ; Oja, Erkki</creator><creatorcontrib>Sovilj, Dusan ; Raiko, Tapani ; Oja, Erkki</creatorcontrib><description>We introduce a probabilistic version of the self-organizing map (SOM) where we model the uncertainty of both the model vectors and the data. While uncertainty information about the data is often not available, this property becomes very useful when the method is combined in a hierarchical manner with probabilistic principal component analysis (PCA), where we do estimate uncertainty of the principal components and the weights. We apply the hierarchical model to the domain of collaborative filtering, where probabilistic PCA is a popular approach due to its robustness for tackling many missing values in the data. The main focus in this paper is for recommendation systems about movies, where the movie rating data matrix of size people times movies is available, but contains lots of missing values. The matrix is first decomposed into a matrix product of people times features and features times movies by PCA. Then we apply the probabilistic SOM to both of those matrices separately. The uncertainty is large when a person (or a movie) has only a few ratings. The experiments with Movielens and Netflix data show an improvement over traditional SOM.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424469161</identifier><identifier>ISBN: 1424469163</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424469171</identifier><identifier>EISBN: 9781424469178</identifier><identifier>EISBN: 142446918X</identifier><identifier>EISBN: 9781424469185</identifier><identifier>DOI: 10.1109/IJCNN.2010.5596578</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks</subject><ispartof>The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sovilj, Dusan</creatorcontrib><creatorcontrib>Raiko, Tapani</creatorcontrib><creatorcontrib>Oja, Erkki</creatorcontrib><title>Extending Self-Organizing Maps with uncertainty information of probabilistic PCA</title><title>The 2010 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>We introduce a probabilistic version of the self-organizing map (SOM) where we model the uncertainty of both the model vectors and the data. While uncertainty information about the data is often not available, this property becomes very useful when the method is combined in a hierarchical manner with probabilistic principal component analysis (PCA), where we do estimate uncertainty of the principal components and the weights. We apply the hierarchical model to the domain of collaborative filtering, where probabilistic PCA is a popular approach due to its robustness for tackling many missing values in the data. The main focus in this paper is for recommendation systems about movies, where the movie rating data matrix of size people times movies is available, but contains lots of missing values. The matrix is first decomposed into a matrix product of people times features and features times movies by PCA. Then we apply the probabilistic SOM to both of those matrices separately. The uncertainty is large when a person (or a movie) has only a few ratings. The experiments with Movielens and Netflix data show an improvement over traditional SOM.</description><subject>Artificial neural networks</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424469161</isbn><isbn>1424469163</isbn><isbn>1424469171</isbn><isbn>9781424469178</isbn><isbn>142446918X</isbn><isbn>9781424469185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOAjEYhestEZAX0E1fYLB_r9MlmYBiEEjUNWmnHawZOmSmRvHpxQirky9fcpJzELoFMgIg-n72VCwWI0oOLISWQuVnqA-cci41KDhHPQoSMs6JukBDrfKTk3B5ckyza9Tvug9CKNOa9dBq8p18dCFu8Iuvq2zZbkwMP3_8bHYd_grpHX_G0rfJhJj2OMSqabcmhSbipsK7trHGhjp0KZR4VYxv0FVl6s4PjzlAb9PJa_GYzZcPs2I8zwIokTLLSulUroQlQG2lqOfalNRRW5LDAmGFVDJ3uSDUOCk9cALOV0YTSxxYygbo7r83eO_XuzZsTbtfH59hv7XFU-E</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Sovilj, Dusan</creator><creator>Raiko, Tapani</creator><creator>Oja, Erkki</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>Extending Self-Organizing Maps with uncertainty information of probabilistic PCA</title><author>Sovilj, Dusan ; Raiko, Tapani ; Oja, Erkki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b3c6d7875b012bf72e49ac2d2bc04075b56768d8502ad66e1401defa90b0d1b23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sovilj, Dusan</creatorcontrib><creatorcontrib>Raiko, Tapani</creatorcontrib><creatorcontrib>Oja, Erkki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sovilj, Dusan</au><au>Raiko, Tapani</au><au>Oja, Erkki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extending Self-Organizing Maps with uncertainty information of probabilistic PCA</atitle><btitle>The 2010 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424469161</isbn><isbn>1424469163</isbn><eisbn>1424469171</eisbn><eisbn>9781424469178</eisbn><eisbn>142446918X</eisbn><eisbn>9781424469185</eisbn><abstract>We introduce a probabilistic version of the self-organizing map (SOM) where we model the uncertainty of both the model vectors and the data. While uncertainty information about the data is often not available, this property becomes very useful when the method is combined in a hierarchical manner with probabilistic principal component analysis (PCA), where we do estimate uncertainty of the principal components and the weights. We apply the hierarchical model to the domain of collaborative filtering, where probabilistic PCA is a popular approach due to its robustness for tackling many missing values in the data. The main focus in this paper is for recommendation systems about movies, where the movie rating data matrix of size people times movies is available, but contains lots of missing values. The matrix is first decomposed into a matrix product of people times features and features times movies by PCA. Then we apply the probabilistic SOM to both of those matrices separately. The uncertainty is large when a person (or a movie) has only a few ratings. The experiments with Movielens and Netflix data show an improvement over traditional SOM.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2010.5596578</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-7
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_5596578
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
title Extending Self-Organizing Maps with uncertainty information of probabilistic PCA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extending%20Self-Organizing%20Maps%20with%20uncertainty%20information%20of%20probabilistic%20PCA&rft.btitle=The%202010%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Sovilj,%20Dusan&rft.date=2010-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424469161&rft.isbn_list=1424469163&rft_id=info:doi/10.1109/IJCNN.2010.5596578&rft_dat=%3Cieee_6IE%3E5596578%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469171&rft.eisbn_list=9781424469178&rft.eisbn_list=142446918X&rft.eisbn_list=9781424469185&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596578&rfr_iscdi=true