Pruning population size in XCS for complex problems

In this paper, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the problem dimension) is not constant. First, we derive how to estimate an equivalent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rakitsch, Barbara, Bernauer, Andreas, Bringmann, Oliver, Rosenstiel, Wolfgang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Rakitsch, Barbara
Bernauer, Andreas
Bringmann, Oliver
Rosenstiel, Wolfgang
description In this paper, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the problem dimension) is not constant. First, we derive how to estimate an equivalent problem dimension for complex problems based on the optimal start classifiers. With the equivalent problem dimension, we calculate the optimal maximum population size just like for regular problems, which has already been done. We empirically validate our results. Furthermore, we introduce a subsumption method to reduce the number of classifiers. In contrast to existing methods, we subsume the classifiers after the learning process, so subsuming does not hinder the evolution of optimal classifiers, which has been reported previously. After subsumption, the number of classifiers drops to about the order of magnitude of the optimal classifiers while the correctness rate nearly stays constant.
doi_str_mv 10.1109/IJCNN.2010.5596377
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596377</ieee_id><sourcerecordid>5596377</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-c96d612a75763ea9c94de213d8fb89108fa6d24efc6c564159c1c4fb199d5b5f3</originalsourceid><addsrcrecordid>eNo1j9tKAzEUReMNbGt_QF_yA1Nzcp3zKIOXSqmCCr6VTCaRyMxkmLSgfr2C7dNis2DDIuQS2AKA4fXysVqvF5z9baVQC2OOyBQkl1IjGDgmEw4aCimZOSFzNOXBaTg9OIHinExz_mSMC0QxIeJ53PWx_6BDGnat3cbU0xx_PI09fa9eaEgjdakbWv9FhzHVre_yBTkLts1-vueMvN3dvlYPxerpflndrIrIAbeFQ91o4NYoo4W36FA2noNoylCXCKwMVjdc-uC0U1qCQgdOhhoQG1WrIGbk6v83eu83wxg7O35v9vHiFyCGSSU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pruning population size in XCS for complex problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rakitsch, Barbara ; Bernauer, Andreas ; Bringmann, Oliver ; Rosenstiel, Wolfgang</creator><creatorcontrib>Rakitsch, Barbara ; Bernauer, Andreas ; Bringmann, Oliver ; Rosenstiel, Wolfgang</creatorcontrib><description>In this paper, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the problem dimension) is not constant. First, we derive how to estimate an equivalent problem dimension for complex problems based on the optimal start classifiers. With the equivalent problem dimension, we calculate the optimal maximum population size just like for regular problems, which has already been done. We empirically validate our results. Furthermore, we introduce a subsumption method to reduce the number of classifiers. In contrast to existing methods, we subsume the classifiers after the learning process, so subsuming does not hinder the evolution of optimal classifiers, which has been reported previously. After subsumption, the number of classifiers drops to about the order of magnitude of the optimal classifiers while the correctness rate nearly stays constant.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424469161</identifier><identifier>ISBN: 1424469163</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424469171</identifier><identifier>EISBN: 9781424469178</identifier><identifier>EISBN: 142446918X</identifier><identifier>EISBN: 9781424469185</identifier><identifier>DOI: 10.1109/IJCNN.2010.5596377</identifier><language>eng</language><publisher>IEEE</publisher><subject>Degradation ; Estimation ; Gallium ; Genetic algorithms ; Probability ; Resource management ; System-on-a-chip</subject><ispartof>The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rakitsch, Barbara</creatorcontrib><creatorcontrib>Bernauer, Andreas</creatorcontrib><creatorcontrib>Bringmann, Oliver</creatorcontrib><creatorcontrib>Rosenstiel, Wolfgang</creatorcontrib><title>Pruning population size in XCS for complex problems</title><title>The 2010 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In this paper, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the problem dimension) is not constant. First, we derive how to estimate an equivalent problem dimension for complex problems based on the optimal start classifiers. With the equivalent problem dimension, we calculate the optimal maximum population size just like for regular problems, which has already been done. We empirically validate our results. Furthermore, we introduce a subsumption method to reduce the number of classifiers. In contrast to existing methods, we subsume the classifiers after the learning process, so subsuming does not hinder the evolution of optimal classifiers, which has been reported previously. After subsumption, the number of classifiers drops to about the order of magnitude of the optimal classifiers while the correctness rate nearly stays constant.</description><subject>Degradation</subject><subject>Estimation</subject><subject>Gallium</subject><subject>Genetic algorithms</subject><subject>Probability</subject><subject>Resource management</subject><subject>System-on-a-chip</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424469161</isbn><isbn>1424469163</isbn><isbn>1424469171</isbn><isbn>9781424469178</isbn><isbn>142446918X</isbn><isbn>9781424469185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9tKAzEUReMNbGt_QF_yA1Nzcp3zKIOXSqmCCr6VTCaRyMxkmLSgfr2C7dNis2DDIuQS2AKA4fXysVqvF5z9baVQC2OOyBQkl1IjGDgmEw4aCimZOSFzNOXBaTg9OIHinExz_mSMC0QxIeJ53PWx_6BDGnat3cbU0xx_PI09fa9eaEgjdakbWv9FhzHVre_yBTkLts1-vueMvN3dvlYPxerpflndrIrIAbeFQ91o4NYoo4W36FA2noNoylCXCKwMVjdc-uC0U1qCQgdOhhoQG1WrIGbk6v83eu83wxg7O35v9vHiFyCGSSU</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Rakitsch, Barbara</creator><creator>Bernauer, Andreas</creator><creator>Bringmann, Oliver</creator><creator>Rosenstiel, Wolfgang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Pruning population size in XCS for complex problems</title><author>Rakitsch, Barbara ; Bernauer, Andreas ; Bringmann, Oliver ; Rosenstiel, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-c96d612a75763ea9c94de213d8fb89108fa6d24efc6c564159c1c4fb199d5b5f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Degradation</topic><topic>Estimation</topic><topic>Gallium</topic><topic>Genetic algorithms</topic><topic>Probability</topic><topic>Resource management</topic><topic>System-on-a-chip</topic><toplevel>online_resources</toplevel><creatorcontrib>Rakitsch, Barbara</creatorcontrib><creatorcontrib>Bernauer, Andreas</creatorcontrib><creatorcontrib>Bringmann, Oliver</creatorcontrib><creatorcontrib>Rosenstiel, Wolfgang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rakitsch, Barbara</au><au>Bernauer, Andreas</au><au>Bringmann, Oliver</au><au>Rosenstiel, Wolfgang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pruning population size in XCS for complex problems</atitle><btitle>The 2010 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424469161</isbn><isbn>1424469163</isbn><eisbn>1424469171</eisbn><eisbn>9781424469178</eisbn><eisbn>142446918X</eisbn><eisbn>9781424469185</eisbn><abstract>In this paper, we show how to prune the population size of the Learning Classifier System XCS for complex problems. We say a problem is complex, when the number of specified bits of the optimal start classifiers (the problem dimension) is not constant. First, we derive how to estimate an equivalent problem dimension for complex problems based on the optimal start classifiers. With the equivalent problem dimension, we calculate the optimal maximum population size just like for regular problems, which has already been done. We empirically validate our results. Furthermore, we introduce a subsumption method to reduce the number of classifiers. In contrast to existing methods, we subsume the classifiers after the learning process, so subsuming does not hinder the evolution of optimal classifiers, which has been reported previously. After subsumption, the number of classifiers drops to about the order of magnitude of the optimal classifiers while the correctness rate nearly stays constant.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2010.5596377</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2010 International Joint Conference on Neural Networks (IJCNN), 2010, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_5596377
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Degradation
Estimation
Gallium
Genetic algorithms
Probability
Resource management
System-on-a-chip
title Pruning population size in XCS for complex problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pruning%20population%20size%20in%20XCS%20for%20complex%20problems&rft.btitle=The%202010%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Rakitsch,%20Barbara&rft.date=2010-01-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424469161&rft.isbn_list=1424469163&rft_id=info:doi/10.1109/IJCNN.2010.5596377&rft_dat=%3Cieee_6IE%3E5596377%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469171&rft.eisbn_list=9781424469178&rft.eisbn_list=142446918X&rft.eisbn_list=9781424469185&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596377&rfr_iscdi=true