Object Tracking by Structure Tensor Analysis

Covariance matrices have recently been a popular choice for versatile tasks like recognition and tracking due to their powerful properties as local descriptor and their low computational demands. This paper outlines similarities of covariance matrices to the well-known structure tensor. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Donoser, M, Kluckner, S, Bischof, H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2603
container_issue
container_start_page 2600
container_title
container_volume
creator Donoser, M
Kluckner, S
Bischof, H
description Covariance matrices have recently been a popular choice for versatile tasks like recognition and tracking due to their powerful properties as local descriptor and their low computational demands. This paper outlines similarities of covariance matrices to the well-known structure tensor. We show that the generalized version of the structure tensor is a powerful descriptor and that it can be calculated in constant time by exploiting the properties of integral images. To measure the similarities between several structure tensors, we describe an approximation scheme which allows comparison in a Euclidean space. Such an approach is also much more efficient than the common, computationally demanding Riemannian Manifold distances. Experimental evaluation proves the applicability for the task of object tracking demonstrating improved performance compared to covariance tracking.
doi_str_mv 10.1109/ICPR.2010.637
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5595997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595997</ieee_id><sourcerecordid>5595997</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a1261f45180e0bc00e76beb97374d8a3eee2113c22ee683146b03031aa71796f3</originalsourceid><addsrcrecordid>eNo1jktLxDAUheMLrGOXrtz0B5jx3jyb5VB8DAyMaPdDUm8lOlZJOov-ewvq6vBxDh-HsSuEJSK423Xz9LwUMKOR9oiVztaohFJWK1THrBC1RG5nPGEX_4UQp6xA0MiV0XjOypxjAGGssVrrgt1swzt1Y9Um333E4a0KU_UypkM3HhJVLQ35K1Wrwe-nHPMlO-v9PlP5lwvW3t-1zSPfbB_WzWrDo4ORexQGe6WxBoLQAZA1gYKz0qrX2ksiEoiyE4LIzJeVCSBBovcWrTO9XLDrX22cp7vvFD99mnZaO-1myQ_q7UUP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Object Tracking by Structure Tensor Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Donoser, M ; Kluckner, S ; Bischof, H</creator><creatorcontrib>Donoser, M ; Kluckner, S ; Bischof, H</creatorcontrib><description>Covariance matrices have recently been a popular choice for versatile tasks like recognition and tracking due to their powerful properties as local descriptor and their low computational demands. This paper outlines similarities of covariance matrices to the well-known structure tensor. We show that the generalized version of the structure tensor is a powerful descriptor and that it can be calculated in constant time by exploiting the properties of integral images. To measure the similarities between several structure tensors, we describe an approximation scheme which allows comparison in a Euclidean space. Such an approach is also much more efficient than the common, computationally demanding Riemannian Manifold distances. Experimental evaluation proves the applicability for the task of object tracking demonstrating improved performance compared to covariance tracking.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.637</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computer vision ; Covariance matrix ; Pattern recognition ; Pixel ; Structure Tensor ; Tensile stress ; Tracking ; Visualization</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2600-2603</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595997$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595997$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Donoser, M</creatorcontrib><creatorcontrib>Kluckner, S</creatorcontrib><creatorcontrib>Bischof, H</creatorcontrib><title>Object Tracking by Structure Tensor Analysis</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Covariance matrices have recently been a popular choice for versatile tasks like recognition and tracking due to their powerful properties as local descriptor and their low computational demands. This paper outlines similarities of covariance matrices to the well-known structure tensor. We show that the generalized version of the structure tensor is a powerful descriptor and that it can be calculated in constant time by exploiting the properties of integral images. To measure the similarities between several structure tensors, we describe an approximation scheme which allows comparison in a Euclidean space. Such an approach is also much more efficient than the common, computationally demanding Riemannian Manifold distances. Experimental evaluation proves the applicability for the task of object tracking demonstrating improved performance compared to covariance tracking.</description><subject>Approximation methods</subject><subject>Computer vision</subject><subject>Covariance matrix</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Structure Tensor</subject><subject>Tensile stress</subject><subject>Tracking</subject><subject>Visualization</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jktLxDAUheMLrGOXrtz0B5jx3jyb5VB8DAyMaPdDUm8lOlZJOov-ewvq6vBxDh-HsSuEJSK423Xz9LwUMKOR9oiVztaohFJWK1THrBC1RG5nPGEX_4UQp6xA0MiV0XjOypxjAGGssVrrgt1swzt1Y9Um333E4a0KU_UypkM3HhJVLQ35K1Wrwe-nHPMlO-v9PlP5lwvW3t-1zSPfbB_WzWrDo4ORexQGe6WxBoLQAZA1gYKz0qrX2ksiEoiyE4LIzJeVCSBBovcWrTO9XLDrX22cp7vvFD99mnZaO-1myQ_q7UUP</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Donoser, M</creator><creator>Kluckner, S</creator><creator>Bischof, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Object Tracking by Structure Tensor Analysis</title><author>Donoser, M ; Kluckner, S ; Bischof, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a1261f45180e0bc00e76beb97374d8a3eee2113c22ee683146b03031aa71796f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Computer vision</topic><topic>Covariance matrix</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Structure Tensor</topic><topic>Tensile stress</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Donoser, M</creatorcontrib><creatorcontrib>Kluckner, S</creatorcontrib><creatorcontrib>Bischof, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Donoser, M</au><au>Kluckner, S</au><au>Bischof, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object Tracking by Structure Tensor Analysis</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2600</spage><epage>2603</epage><pages>2600-2603</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Covariance matrices have recently been a popular choice for versatile tasks like recognition and tracking due to their powerful properties as local descriptor and their low computational demands. This paper outlines similarities of covariance matrices to the well-known structure tensor. We show that the generalized version of the structure tensor is a powerful descriptor and that it can be calculated in constant time by exploiting the properties of integral images. To measure the similarities between several structure tensors, we describe an approximation scheme which allows comparison in a Euclidean space. Such an approach is also much more efficient than the common, computationally demanding Riemannian Manifold distances. Experimental evaluation proves the applicability for the task of object tracking demonstrating improved performance compared to covariance tracking.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.637</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.2600-2603
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5595997
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Computer vision
Covariance matrix
Pattern recognition
Pixel
Structure Tensor
Tensile stress
Tracking
Visualization
title Object Tracking by Structure Tensor Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20Tracking%20by%20Structure%20Tensor%20Analysis&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Donoser,%20M&rft.date=2010-08&rft.spage=2600&rft.epage=2603&rft.pages=2600-2603&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.637&rft_dat=%3Cieee_6IE%3E5595997%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5595997&rfr_iscdi=true