Transfer of Supervision for Improved Address Standardization
Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to creat...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2181 |
---|---|
container_issue | |
container_start_page | 2178 |
container_title | |
container_volume | |
creator | Kothari, Govind Faruquie, Tanveer A Subramaniam, L Venkata Prasad, K Hima Mohania, Mukesh K |
description | Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision. |
doi_str_mv | 10.1109/ICPR.2010.533 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5595945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595945</ieee_id><sourcerecordid>5595945</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ac67a06592ad8464934b037758466d7bb122b4e1567502ee06cc29799cbbe7bd3</originalsourceid><addsrcrecordid>eNo1js1KxDAYReMfWMcuXbnpC3TM35c04GYooxYGFKf7IWm-QsBpS1IH9OktqKvL4R4ul5A7RteMUfPQ1G_va04XBCHOSG50xSSXUoNk8pxkvBKs1AtekJv_gvNLkjEKrJQK2DXJUwqOcqWVBoCMPLbRDqnHWIx9sf-cMJ5CCuNQ9GMsmuMUxxP6YuN9xJSK_WwHb6MP33ZepFty1duPhPlfrkj7tG3rl3L3-tzUm10ZDJ1L2yltqQLDra-kkkZIR4XWsIDy2jnGuZPIYLlEOSJVXceNNqZzDrXzYkXuf2cDIh6mGI42fh0ADBgJ4gePE0uo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transfer of Supervision for Improved Address Standardization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kothari, Govind ; Faruquie, Tanveer A ; Subramaniam, L Venkata ; Prasad, K Hima ; Mohania, Mukesh K</creator><creatorcontrib>Kothari, Govind ; Faruquie, Tanveer A ; Subramaniam, L Venkata ; Prasad, K Hima ; Mohania, Mukesh K</creatorcontrib><description>Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; address cleansing ; address standardization ; Buildings ; Clustering algorithms ; Data models ; HDP ; Roads ; Semantics ; Training ; transfer learning</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2178-2181</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kothari, Govind</creatorcontrib><creatorcontrib>Faruquie, Tanveer A</creatorcontrib><creatorcontrib>Subramaniam, L Venkata</creatorcontrib><creatorcontrib>Prasad, K Hima</creatorcontrib><creatorcontrib>Mohania, Mukesh K</creatorcontrib><title>Transfer of Supervision for Improved Address Standardization</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision.</description><subject>Adaptation model</subject><subject>address cleansing</subject><subject>address standardization</subject><subject>Buildings</subject><subject>Clustering algorithms</subject><subject>Data models</subject><subject>HDP</subject><subject>Roads</subject><subject>Semantics</subject><subject>Training</subject><subject>transfer learning</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1js1KxDAYReMfWMcuXbnpC3TM35c04GYooxYGFKf7IWm-QsBpS1IH9OktqKvL4R4ul5A7RteMUfPQ1G_va04XBCHOSG50xSSXUoNk8pxkvBKs1AtekJv_gvNLkjEKrJQK2DXJUwqOcqWVBoCMPLbRDqnHWIx9sf-cMJ5CCuNQ9GMsmuMUxxP6YuN9xJSK_WwHb6MP33ZepFty1duPhPlfrkj7tG3rl3L3-tzUm10ZDJ1L2yltqQLDra-kkkZIR4XWsIDy2jnGuZPIYLlEOSJVXceNNqZzDrXzYkXuf2cDIh6mGI42fh0ADBgJ4gePE0uo</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kothari, Govind</creator><creator>Faruquie, Tanveer A</creator><creator>Subramaniam, L Venkata</creator><creator>Prasad, K Hima</creator><creator>Mohania, Mukesh K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Transfer of Supervision for Improved Address Standardization</title><author>Kothari, Govind ; Faruquie, Tanveer A ; Subramaniam, L Venkata ; Prasad, K Hima ; Mohania, Mukesh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ac67a06592ad8464934b037758466d7bb122b4e1567502ee06cc29799cbbe7bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>address cleansing</topic><topic>address standardization</topic><topic>Buildings</topic><topic>Clustering algorithms</topic><topic>Data models</topic><topic>HDP</topic><topic>Roads</topic><topic>Semantics</topic><topic>Training</topic><topic>transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kothari, Govind</creatorcontrib><creatorcontrib>Faruquie, Tanveer A</creatorcontrib><creatorcontrib>Subramaniam, L Venkata</creatorcontrib><creatorcontrib>Prasad, K Hima</creatorcontrib><creatorcontrib>Mohania, Mukesh K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothari, Govind</au><au>Faruquie, Tanveer A</au><au>Subramaniam, L Venkata</au><au>Prasad, K Hima</au><au>Mohania, Mukesh K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transfer of Supervision for Improved Address Standardization</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2178</spage><epage>2181</epage><pages>2178-2181</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.533</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.2178-2181 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5595945 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model address cleansing address standardization Buildings Clustering algorithms Data models HDP Roads Semantics Training transfer learning |
title | Transfer of Supervision for Improved Address Standardization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transfer%20of%20Supervision%20for%20Improved%20Address%20Standardization&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Kothari,%20Govind&rft.date=2010-08&rft.spage=2178&rft.epage=2181&rft.pages=2178-2181&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.533&rft_dat=%3Cieee_6IE%3E5595945%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5595945&rfr_iscdi=true |