Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections

This paper discusses the paired transform-based method of reconstruction of 2-D images from their projections. The complete set of basic functions of the 2-D discrete paired transform are defined by specific directions, i.e. the transform is directional and can be calculated from the projection data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dursun, Serkan, Nan Du, Grigoryan, Artyom M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2398
container_issue
container_start_page 2395
container_title
container_volume
creator Dursun, Serkan
Nan Du
Grigoryan, Artyom M
description This paper discusses the paired transform-based method of reconstruction of 2-D images from their projections. The complete set of basic functions of the 2-D discrete paired transform are defined by specific directions, i.e. the transform is directional and can be calculated from the projection data. A simple formula is presented for image reconstruction without calculating the 2-D discrete Fourier transform in the case, when the size of image is L r × L r , when L is prime. The image reconstruction is described by the discrete model that is used in the series expansion methods of image reconstruction. The proposed method of reconstruction has been implemented and successfully applied for modeled images on Cartesian grid of sizes up to 256×256.
doi_str_mv 10.1109/ICPR.2010.586
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5595796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595796</ieee_id><sourcerecordid>5595796</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ebc4a09bad60949c0d7fba773c7aa5570cca0cfdee9cfff5acc21d085513a3123</originalsourceid><addsrcrecordid>eNo1zMtOwzAQhWFzkyglS1Zs_AIptuOJ4yUKBSoqUZXsq4kzBqMmRk5Y8PZUXFZHn470M3YlxUJKYW9W9Wa7UOJAqMojlllTSa20NqClPmYzVRUyNweesIv_Q6lTNpMCZK5LkOcsG8fQClWa0gDAjD1tMCTqeJNwGH1MPX_ZB0e8eaOYqOfRc5Xf8VWPr8S35OIwTunTTSEO3KfY802K7_Tj8ZKdedyPlP3tnDX3y6Z-zNfPD6v6dp0HK6acWqdR2Ba7UlhtneiMb9GYwhlEACOcQ-F8R2Sd9x7QOSU7UQHIAgupijm7_s0GItp9pNBj-toBWDC2LL4B1iNSIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dursun, Serkan ; Nan Du ; Grigoryan, Artyom M</creator><creatorcontrib>Dursun, Serkan ; Nan Du ; Grigoryan, Artyom M</creatorcontrib><description>This paper discusses the paired transform-based method of reconstruction of 2-D images from their projections. The complete set of basic functions of the 2-D discrete paired transform are defined by specific directions, i.e. the transform is directional and can be calculated from the projection data. A simple formula is presented for image reconstruction without calculating the 2-D discrete Fourier transform in the case, when the size of image is L r × L r , when L is prime. The image reconstruction is described by the discrete model that is used in the series expansion methods of image reconstruction. The proposed method of reconstruction has been implemented and successfully applied for modeled images on Cartesian grid of sizes up to 256×256.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.586</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete Fourier transforms ; Generators ; Head ; Image reconstruction ; Image restoration and reconstruction ; Mathematical model ; paired transform ; signal/image representation ; Tomography</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2395-2398</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dursun, Serkan</creatorcontrib><creatorcontrib>Nan Du</creatorcontrib><creatorcontrib>Grigoryan, Artyom M</creatorcontrib><title>Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>This paper discusses the paired transform-based method of reconstruction of 2-D images from their projections. The complete set of basic functions of the 2-D discrete paired transform are defined by specific directions, i.e. the transform is directional and can be calculated from the projection data. A simple formula is presented for image reconstruction without calculating the 2-D discrete Fourier transform in the case, when the size of image is L r × L r , when L is prime. The image reconstruction is described by the discrete model that is used in the series expansion methods of image reconstruction. The proposed method of reconstruction has been implemented and successfully applied for modeled images on Cartesian grid of sizes up to 256×256.</description><subject>Discrete Fourier transforms</subject><subject>Generators</subject><subject>Head</subject><subject>Image reconstruction</subject><subject>Image restoration and reconstruction</subject><subject>Mathematical model</subject><subject>paired transform</subject><subject>signal/image representation</subject><subject>Tomography</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1zMtOwzAQhWFzkyglS1Zs_AIptuOJ4yUKBSoqUZXsq4kzBqMmRk5Y8PZUXFZHn470M3YlxUJKYW9W9Wa7UOJAqMojlllTSa20NqClPmYzVRUyNweesIv_Q6lTNpMCZK5LkOcsG8fQClWa0gDAjD1tMCTqeJNwGH1MPX_ZB0e8eaOYqOfRc5Xf8VWPr8S35OIwTunTTSEO3KfY802K7_Tj8ZKdedyPlP3tnDX3y6Z-zNfPD6v6dp0HK6acWqdR2Ba7UlhtneiMb9GYwhlEACOcQ-F8R2Sd9x7QOSU7UQHIAgupijm7_s0GItp9pNBj-toBWDC2LL4B1iNSIw</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Dursun, Serkan</creator><creator>Nan Du</creator><creator>Grigoryan, Artyom M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections</title><author>Dursun, Serkan ; Nan Du ; Grigoryan, Artyom M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ebc4a09bad60949c0d7fba773c7aa5570cca0cfdee9cfff5acc21d085513a3123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Discrete Fourier transforms</topic><topic>Generators</topic><topic>Head</topic><topic>Image reconstruction</topic><topic>Image restoration and reconstruction</topic><topic>Mathematical model</topic><topic>paired transform</topic><topic>signal/image representation</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Dursun, Serkan</creatorcontrib><creatorcontrib>Nan Du</creatorcontrib><creatorcontrib>Grigoryan, Artyom M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dursun, Serkan</au><au>Nan Du</au><au>Grigoryan, Artyom M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2395</spage><epage>2398</epage><pages>2395-2398</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>This paper discusses the paired transform-based method of reconstruction of 2-D images from their projections. The complete set of basic functions of the 2-D discrete paired transform are defined by specific directions, i.e. the transform is directional and can be calculated from the projection data. A simple formula is presented for image reconstruction without calculating the 2-D discrete Fourier transform in the case, when the size of image is L r × L r , when L is prime. The image reconstruction is described by the discrete model that is used in the series expansion methods of image reconstruction. The proposed method of reconstruction has been implemented and successfully applied for modeled images on Cartesian grid of sizes up to 256×256.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.586</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.2395-2398
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5595796
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete Fourier transforms
Generators
Head
Image reconstruction
Image restoration and reconstruction
Mathematical model
paired transform
signal/image representation
Tomography
title Paired Transform Slice Theorem of 2-D Image Reconstruction from Projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Paired%20Transform%20Slice%20Theorem%20of%202-D%20Image%20Reconstruction%20from%20Projections&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Dursun,%20Serkan&rft.date=2010-08&rft.spage=2395&rft.epage=2398&rft.pages=2395-2398&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.586&rft_dat=%3Cieee_6IE%3E5595796%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5595796&rfr_iscdi=true