Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter
In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2010-10, Vol.46 (4), p.2108-2117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2117 |
---|---|
container_issue | 4 |
container_start_page | 2108 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 46 |
creator | He, You Jian, Tao Su, Feng Qu, Changwen Ping, Dianfa |
description | In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation. |
doi_str_mv | 10.1109/TAES.2010.5595620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5595620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595620</ieee_id><sourcerecordid>861536965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</originalsourceid><addsrcrecordid>eNpdkMtOxDAMRSMEEsPAByA2FRtWhbynWY7K8JB4LIB1FBJHKipNSVIEf0-GARYsLPvKx5Z9ETok-JQQrM4el6uHU4qLFEIJSfEWmhEhFrWSmG2jGcakqRUVZBftpfRSJG84myGzdGbM3TtU55DB5i4M1XIc-86a7zr4qg3vJnZmsFDdmhy7j2qVcvdqcoiVL9GGGKE3GVx1F4b60kwpFbxq-ylniPtox5s-wcFPnqOni9Vje1Xf3F9et8ub2jLKc22xJwAL_2yBS-6dwMZjpRxVzCluGkktdoQ6xykXdCE89dIQ9iwJbhgjjs3RyWbvGMPbBCnr1y5Z6HszQJiSbiQRTCopCnn8j3wJUxzKcbphC65Ew5oCkQ1kY0gpgtdjLE_HT02wXluu15brteX6x_Iyc7SZ6QDgj__tfgFpAn0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837495838</pqid></control><display><type>article</type><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><source>IEEE Electronic Library (IEL)</source><creator>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</creator><creatorcontrib>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</creatorcontrib><description>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2010.5595620</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation model ; Clutter ; Computer simulation ; Correlation ; Covariance matrix ; Detectors ; Estimators ; Maximum likelihood estimation ; Monte Carlo methods ; Monte Carlo simulation ; Radar ; Statistical analysis ; Studies ; Surface layer ; Texture</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2010-10, Vol.46 (4), p.2108-2117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</citedby><cites>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, You</creatorcontrib><creatorcontrib>Jian, Tao</creatorcontrib><creatorcontrib>Su, Feng</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Ping, Dianfa</creatorcontrib><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</description><subject>Adaptation model</subject><subject>Clutter</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Estimators</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Radar</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOxDAMRSMEEsPAByA2FRtWhbynWY7K8JB4LIB1FBJHKipNSVIEf0-GARYsLPvKx5Z9ETok-JQQrM4el6uHU4qLFEIJSfEWmhEhFrWSmG2jGcakqRUVZBftpfRSJG84myGzdGbM3TtU55DB5i4M1XIc-86a7zr4qg3vJnZmsFDdmhy7j2qVcvdqcoiVL9GGGKE3GVx1F4b60kwpFbxq-ylniPtox5s-wcFPnqOni9Vje1Xf3F9et8ub2jLKc22xJwAL_2yBS-6dwMZjpRxVzCluGkktdoQ6xykXdCE89dIQ9iwJbhgjjs3RyWbvGMPbBCnr1y5Z6HszQJiSbiQRTCopCnn8j3wJUxzKcbphC65Ew5oCkQ1kY0gpgtdjLE_HT02wXluu15brteX6x_Iyc7SZ6QDgj__tfgFpAn0w</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>He, You</creator><creator>Jian, Tao</creator><creator>Su, Feng</creator><creator>Qu, Changwen</creator><creator>Ping, Dianfa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201010</creationdate><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><author>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Clutter</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Estimators</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Radar</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, You</creatorcontrib><creatorcontrib>Jian, Tao</creatorcontrib><creatorcontrib>Su, Feng</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Ping, Dianfa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, You</au><au>Jian, Tao</au><au>Su, Feng</au><au>Qu, Changwen</au><au>Ping, Dianfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2010-10</date><risdate>2010</risdate><volume>46</volume><issue>4</issue><spage>2108</spage><epage>2117</epage><pages>2108-2117</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2010.5595620</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2010-10, Vol.46 (4), p.2108-2117 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_5595620 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation model Clutter Computer simulation Correlation Covariance matrix Detectors Estimators Maximum likelihood estimation Monte Carlo methods Monte Carlo simulation Radar Statistical analysis Studies Surface layer Texture |
title | Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20Application%20of%20Covariance%20Matrix%20Estimator%20for%20Correlated%20Non-Gaussian%20Clutter&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=He,%20You&rft.date=2010-10&rft.volume=46&rft.issue=4&rft.spage=2108&rft.epage=2117&rft.pages=2108-2117&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2010.5595620&rft_dat=%3Cproquest_RIE%3E861536965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=837495838&rft_id=info:pmid/&rft_ieee_id=5595620&rfr_iscdi=true |