Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter

In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2010-10, Vol.46 (4), p.2108-2117
Hauptverfasser: He, You, Jian, Tao, Su, Feng, Qu, Changwen, Ping, Dianfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2117
container_issue 4
container_start_page 2108
container_title IEEE transactions on aerospace and electronic systems
container_volume 46
creator He, You
Jian, Tao
Su, Feng
Qu, Changwen
Ping, Dianfa
description In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.
doi_str_mv 10.1109/TAES.2010.5595620
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5595620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595620</ieee_id><sourcerecordid>861536965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</originalsourceid><addsrcrecordid>eNpdkMtOxDAMRSMEEsPAByA2FRtWhbynWY7K8JB4LIB1FBJHKipNSVIEf0-GARYsLPvKx5Z9ETok-JQQrM4el6uHU4qLFEIJSfEWmhEhFrWSmG2jGcakqRUVZBftpfRSJG84myGzdGbM3TtU55DB5i4M1XIc-86a7zr4qg3vJnZmsFDdmhy7j2qVcvdqcoiVL9GGGKE3GVx1F4b60kwpFbxq-ylniPtox5s-wcFPnqOni9Vje1Xf3F9et8ub2jLKc22xJwAL_2yBS-6dwMZjpRxVzCluGkktdoQ6xykXdCE89dIQ9iwJbhgjjs3RyWbvGMPbBCnr1y5Z6HszQJiSbiQRTCopCnn8j3wJUxzKcbphC65Ew5oCkQ1kY0gpgtdjLE_HT02wXluu15brteX6x_Iyc7SZ6QDgj__tfgFpAn0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837495838</pqid></control><display><type>article</type><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><source>IEEE Electronic Library (IEL)</source><creator>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</creator><creatorcontrib>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</creatorcontrib><description>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2010.5595620</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation model ; Clutter ; Computer simulation ; Correlation ; Covariance matrix ; Detectors ; Estimators ; Maximum likelihood estimation ; Monte Carlo methods ; Monte Carlo simulation ; Radar ; Statistical analysis ; Studies ; Surface layer ; Texture</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2010-10, Vol.46 (4), p.2108-2117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</citedby><cites>FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, You</creatorcontrib><creatorcontrib>Jian, Tao</creatorcontrib><creatorcontrib>Su, Feng</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Ping, Dianfa</creatorcontrib><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</description><subject>Adaptation model</subject><subject>Clutter</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Estimators</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Radar</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOxDAMRSMEEsPAByA2FRtWhbynWY7K8JB4LIB1FBJHKipNSVIEf0-GARYsLPvKx5Z9ETok-JQQrM4el6uHU4qLFEIJSfEWmhEhFrWSmG2jGcakqRUVZBftpfRSJG84myGzdGbM3TtU55DB5i4M1XIc-86a7zr4qg3vJnZmsFDdmhy7j2qVcvdqcoiVL9GGGKE3GVx1F4b60kwpFbxq-ylniPtox5s-wcFPnqOni9Vje1Xf3F9et8ub2jLKc22xJwAL_2yBS-6dwMZjpRxVzCluGkktdoQ6xykXdCE89dIQ9iwJbhgjjs3RyWbvGMPbBCnr1y5Z6HszQJiSbiQRTCopCnn8j3wJUxzKcbphC65Ew5oCkQ1kY0gpgtdjLE_HT02wXluu15brteX6x_Iyc7SZ6QDgj__tfgFpAn0w</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>He, You</creator><creator>Jian, Tao</creator><creator>Su, Feng</creator><creator>Qu, Changwen</creator><creator>Ping, Dianfa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201010</creationdate><title>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</title><author>He, You ; Jian, Tao ; Su, Feng ; Qu, Changwen ; Ping, Dianfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c0f1ee7fbce464fd50af099d293d94a862c0d12dd4245275f2f6a13b6108331d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Clutter</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Estimators</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Radar</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, You</creatorcontrib><creatorcontrib>Jian, Tao</creatorcontrib><creatorcontrib>Su, Feng</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Ping, Dianfa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, You</au><au>Jian, Tao</au><au>Su, Feng</au><au>Qu, Changwen</au><au>Ping, Dianfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2010-10</date><risdate>2010</risdate><volume>46</volume><issue>4</issue><spage>2108</spage><epage>2117</epage><pages>2108-2117</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In the clutter-dominated disturbance modeled as spherically invariant random vectors with the same covariance matrix and possibly correlated texture components, we propose an estimator of covariance matrix, which exploits all secondary data fully and introduces a constraint of matrix trace. Moreover, its adaptive target detection application is investigated. For match between the estimated clutter group size and the actual one, the adaptive normalized matched filter (ANMF) with the new estimator of any number of iterations theoretically ensures the constant false alarm rate (CFAR) property, with respect to the normalized clutter covariance matrix and the statistics of the texture. Furthermore, the simulation results show that it still guarantees the approximate CFAR property for mismatch cases and has an acceptable loss with respect to its nonadaptive counterpart in cases of relevant interest for radar applications. Finally, the effectiveness of ANMF with the proposed estimator is confirmed by Monte Carlo simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2010.5595620</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2010-10, Vol.46 (4), p.2108-2117
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_5595620
source IEEE Electronic Library (IEL)
subjects Adaptation model
Clutter
Computer simulation
Correlation
Covariance matrix
Detectors
Estimators
Maximum likelihood estimation
Monte Carlo methods
Monte Carlo simulation
Radar
Statistical analysis
Studies
Surface layer
Texture
title Adaptive Detection Application of Covariance Matrix Estimator for Correlated Non-Gaussian Clutter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20Application%20of%20Covariance%20Matrix%20Estimator%20for%20Correlated%20Non-Gaussian%20Clutter&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=He,%20You&rft.date=2010-10&rft.volume=46&rft.issue=4&rft.spage=2108&rft.epage=2117&rft.pages=2108-2117&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2010.5595620&rft_dat=%3Cproquest_RIE%3E861536965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=837495838&rft_id=info:pmid/&rft_ieee_id=5595620&rfr_iscdi=true