A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics

We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eskiizmirliler, S., Erkmen, A.M., Basaran, F., Nur Cakar, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318 vol.1
container_issue
container_start_page 315
container_title
container_volume 1
creator Eskiizmirliler, S.
Erkmen, A.M.
Basaran, F.
Nur Cakar, A.
description We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.
doi_str_mv 10.1109/ICIP.1996.559496
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_559496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>559496</ieee_id><sourcerecordid>559496</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-cd6e80f05ac2d961a2852275733a2f846dbb20259a7b881da88f89f9529208d73</originalsourceid><addsrcrecordid>eNotkE9LxDAQxQMiKGvv4ilfoGuSNm1yXBb_LCzoQc_LtJm00TbVJkV694MbWIeBN5f3ezNDyC1nW86Zvj_sD69brnW1lVKXurogma4VS10UQmp-RbIQPliqUkqh2DX53dF-bWZnqPMRh8F16CM1Djo_hehaGtYQcaQNBDR08tTjMsOQJP5M82eg4JN1hA7TBMMaXKAR29677wVDgtLYI7UOh-S2FJY4jRATql3jlLIwZYQbcmlhCJj964a8Pz687Z_z48vTYb875o6zMuatqVAxyyS0wuiKg1BSiFrWRQHCqrIyTSNYuhPqRiluQCmrtNVSaMGUqYsNuTtzHSKevua097yezq8q_gCjGmFk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</creator><creatorcontrib>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</creatorcontrib><description>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</description><identifier>ISBN: 9780780332591</identifier><identifier>ISBN: 0780332598</identifier><identifier>DOI: 10.1109/ICIP.1996.559496</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Biological cells ; Cameras ; Digital images ; Hybrid intelligent systems ; Intelligent networks ; Microcomputers ; Microscopy ; Neural networks</subject><ispartof>Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.1, p.315-318 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/559496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/559496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eskiizmirliler, S.</creatorcontrib><creatorcontrib>Erkmen, A.M.</creatorcontrib><creatorcontrib>Basaran, F.</creatorcontrib><creatorcontrib>Nur Cakar, A.</creatorcontrib><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><title>Proceedings of 3rd IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biological cells</subject><subject>Cameras</subject><subject>Digital images</subject><subject>Hybrid intelligent systems</subject><subject>Intelligent networks</subject><subject>Microcomputers</subject><subject>Microscopy</subject><subject>Neural networks</subject><isbn>9780780332591</isbn><isbn>0780332598</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAQxQMiKGvv4ilfoGuSNm1yXBb_LCzoQc_LtJm00TbVJkV694MbWIeBN5f3ezNDyC1nW86Zvj_sD69brnW1lVKXurogma4VS10UQmp-RbIQPliqUkqh2DX53dF-bWZnqPMRh8F16CM1Djo_hehaGtYQcaQNBDR08tTjMsOQJP5M82eg4JN1hA7TBMMaXKAR29677wVDgtLYI7UOh-S2FJY4jRATql3jlLIwZYQbcmlhCJj964a8Pz687Z_z48vTYb875o6zMuatqVAxyyS0wuiKg1BSiFrWRQHCqrIyTSNYuhPqRiluQCmrtNVSaMGUqYsNuTtzHSKevua097yezq8q_gCjGmFk</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Eskiizmirliler, S.</creator><creator>Erkmen, A.M.</creator><creator>Basaran, F.</creator><creator>Nur Cakar, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><author>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-cd6e80f05ac2d961a2852275733a2f846dbb20259a7b881da88f89f9529208d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biological cells</topic><topic>Cameras</topic><topic>Digital images</topic><topic>Hybrid intelligent systems</topic><topic>Intelligent networks</topic><topic>Microcomputers</topic><topic>Microscopy</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Eskiizmirliler, S.</creatorcontrib><creatorcontrib>Erkmen, A.M.</creatorcontrib><creatorcontrib>Basaran, F.</creatorcontrib><creatorcontrib>Nur Cakar, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eskiizmirliler, S.</au><au>Erkmen, A.M.</au><au>Basaran, F.</au><au>Nur Cakar, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</atitle><btitle>Proceedings of 3rd IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>315</spage><epage>318 vol.1</epage><pages>315-318 vol.1</pages><isbn>9780780332591</isbn><isbn>0780332598</isbn><abstract>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1996.559496</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780332591
ispartof Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.1, p.315-318 vol.1
issn
language eng
recordid cdi_ieee_primary_559496
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Biological cells
Cameras
Digital images
Hybrid intelligent systems
Intelligent networks
Microcomputers
Microscopy
Neural networks
title A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20intelligent%20diagnostic%20system%20based%20on%20neural%20networks%20and%20image%20analysis%20techniques%20in%20the%20field%20of%20automated%20cytogenetics&rft.btitle=Proceedings%20of%203rd%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Eskiizmirliler,%20S.&rft.date=1996&rft.volume=1&rft.spage=315&rft.epage=318%20vol.1&rft.pages=315-318%20vol.1&rft.isbn=9780780332591&rft.isbn_list=0780332598&rft_id=info:doi/10.1109/ICIP.1996.559496&rft_dat=%3Cieee_6IE%3E559496%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=559496&rfr_iscdi=true