A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics
We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 vol.1 |
---|---|
container_issue | |
container_start_page | 315 |
container_title | |
container_volume | 1 |
creator | Eskiizmirliler, S. Erkmen, A.M. Basaran, F. Nur Cakar, A. |
description | We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view. |
doi_str_mv | 10.1109/ICIP.1996.559496 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_559496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>559496</ieee_id><sourcerecordid>559496</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-cd6e80f05ac2d961a2852275733a2f846dbb20259a7b881da88f89f9529208d73</originalsourceid><addsrcrecordid>eNotkE9LxDAQxQMiKGvv4ilfoGuSNm1yXBb_LCzoQc_LtJm00TbVJkV694MbWIeBN5f3ezNDyC1nW86Zvj_sD69brnW1lVKXurogma4VS10UQmp-RbIQPliqUkqh2DX53dF-bWZnqPMRh8F16CM1Djo_hehaGtYQcaQNBDR08tTjMsOQJP5M82eg4JN1hA7TBMMaXKAR29677wVDgtLYI7UOh-S2FJY4jRATql3jlLIwZYQbcmlhCJj964a8Pz687Z_z48vTYb875o6zMuatqVAxyyS0wuiKg1BSiFrWRQHCqrIyTSNYuhPqRiluQCmrtNVSaMGUqYsNuTtzHSKevua097yezq8q_gCjGmFk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</creator><creatorcontrib>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</creatorcontrib><description>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</description><identifier>ISBN: 9780780332591</identifier><identifier>ISBN: 0780332598</identifier><identifier>DOI: 10.1109/ICIP.1996.559496</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Biological cells ; Cameras ; Digital images ; Hybrid intelligent systems ; Intelligent networks ; Microcomputers ; Microscopy ; Neural networks</subject><ispartof>Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.1, p.315-318 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/559496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/559496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eskiizmirliler, S.</creatorcontrib><creatorcontrib>Erkmen, A.M.</creatorcontrib><creatorcontrib>Basaran, F.</creatorcontrib><creatorcontrib>Nur Cakar, A.</creatorcontrib><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><title>Proceedings of 3rd IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biological cells</subject><subject>Cameras</subject><subject>Digital images</subject><subject>Hybrid intelligent systems</subject><subject>Intelligent networks</subject><subject>Microcomputers</subject><subject>Microscopy</subject><subject>Neural networks</subject><isbn>9780780332591</isbn><isbn>0780332598</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAQxQMiKGvv4ilfoGuSNm1yXBb_LCzoQc_LtJm00TbVJkV694MbWIeBN5f3ezNDyC1nW86Zvj_sD69brnW1lVKXurogma4VS10UQmp-RbIQPliqUkqh2DX53dF-bWZnqPMRh8F16CM1Djo_hehaGtYQcaQNBDR08tTjMsOQJP5M82eg4JN1hA7TBMMaXKAR29677wVDgtLYI7UOh-S2FJY4jRATql3jlLIwZYQbcmlhCJj964a8Pz687Z_z48vTYb875o6zMuatqVAxyyS0wuiKg1BSiFrWRQHCqrIyTSNYuhPqRiluQCmrtNVSaMGUqYsNuTtzHSKevua097yezq8q_gCjGmFk</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Eskiizmirliler, S.</creator><creator>Erkmen, A.M.</creator><creator>Basaran, F.</creator><creator>Nur Cakar, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</title><author>Eskiizmirliler, S. ; Erkmen, A.M. ; Basaran, F. ; Nur Cakar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-cd6e80f05ac2d961a2852275733a2f846dbb20259a7b881da88f89f9529208d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biological cells</topic><topic>Cameras</topic><topic>Digital images</topic><topic>Hybrid intelligent systems</topic><topic>Intelligent networks</topic><topic>Microcomputers</topic><topic>Microscopy</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Eskiizmirliler, S.</creatorcontrib><creatorcontrib>Erkmen, A.M.</creatorcontrib><creatorcontrib>Basaran, F.</creatorcontrib><creatorcontrib>Nur Cakar, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eskiizmirliler, S.</au><au>Erkmen, A.M.</au><au>Basaran, F.</au><au>Nur Cakar, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics</atitle><btitle>Proceedings of 3rd IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>315</spage><epage>318 vol.1</epage><pages>315-318 vol.1</pages><isbn>9780780332591</isbn><isbn>0780332598</isbn><abstract>We introduce a hybrid intelligent karyotyping system based on two different types of artificial neural networks (ANNs) and chromosome's features obtained by digital image processing techniques. A microscope equipped with a CCTV camera and a microcomputer including a frame grabber are the basic components of our hardware set-up. The inputs to the ANN structure are obtained directly from digital chromosome images by using two recently developed object detection and object skeletonizing algorithms. Moreover, the band patterns of chromosomes are represented by applying wavelet transform techniques on the gray level profiles of chromosomes. The network parameters are determined by using the results of many training and testing experiments in order to reach an optimal state from the classification performance point of view.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1996.559496</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780332591 |
ispartof | Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.1, p.315-318 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_559496 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Artificial neural networks Biological cells Cameras Digital images Hybrid intelligent systems Intelligent networks Microcomputers Microscopy Neural networks |
title | A hybrid intelligent diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20intelligent%20diagnostic%20system%20based%20on%20neural%20networks%20and%20image%20analysis%20techniques%20in%20the%20field%20of%20automated%20cytogenetics&rft.btitle=Proceedings%20of%203rd%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Eskiizmirliler,%20S.&rft.date=1996&rft.volume=1&rft.spage=315&rft.epage=318%20vol.1&rft.pages=315-318%20vol.1&rft.isbn=9780780332591&rft.isbn_list=0780332598&rft_id=info:doi/10.1109/ICIP.1996.559496&rft_dat=%3Cieee_6IE%3E559496%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=559496&rfr_iscdi=true |