Metrics for Performance Prediction of Wireless Sensor Networks
We present the derivation of a novel metric for the performance prediction of Wireless Sensor Networks (WSNs). In particular, the metric can be applied in, for example, monitoring and surveillance applications where WSNs are used. Those networks execute protocols or techniques that are often sensiti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Oldewurtel, F Mähönen, P |
description | We present the derivation of a novel metric for the performance prediction of Wireless Sensor Networks (WSNs). In particular, the metric can be applied in, for example, monitoring and surveillance applications where WSNs are used. Those networks execute protocols or techniques that are often sensitive to spatial correlation. The proposed metric is based on the correlation in the sensed phenomenon and the correlation in the location of the sensor nodes. The main application area of the performance prediction metric lies in the design and optimisation of WSNs prior to the costly deployment phase. Since extensive simulations can be completely avoided it serves as a rapid and lightweight evaluation tool for comparative analysis of WSNs. The concept is applicable and also extensible through merging of selected performance criteria. |
doi_str_mv | 10.1109/VETECF.2010.5594519 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5594519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5594519</ieee_id><sourcerecordid>5594519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2aa46e4e47edd34152c6aa4e461f2adae225d956d7527d8c1b6ceab508a66933</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhuMNnFafoJu8wNTcTjKzEWSYqlC1YNVlSZMzEG1nJBmQvr0BC64--G-Ln5AZZ3POWX3z3q7bZjEXLAsAtQJen5AJV0IpCUbVp6QQYEwplIazf0Oyc1LkPislk9UlmaT0yRjjXIuC3D7hGINLtBsiXWHM2NveIV1F9MGNYejp0NGPEHGHKdFX7FNOPuP4M8SvdEUuOrtLeH3klLwt2nXzUC5f7h-bu2UZuIGx7IS1SqNCZdB7qTgIp7OESvPseYtCgK9BewPC-MrxrXZot8Aqq3Ut5ZTM_nYDIm6-Y9jbeNgcT5C_wE1NSQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metrics for Performance Prediction of Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oldewurtel, F ; Mähönen, P</creator><creatorcontrib>Oldewurtel, F ; Mähönen, P</creatorcontrib><description>We present the derivation of a novel metric for the performance prediction of Wireless Sensor Networks (WSNs). In particular, the metric can be applied in, for example, monitoring and surveillance applications where WSNs are used. Those networks execute protocols or techniques that are often sensitive to spatial correlation. The proposed metric is based on the correlation in the sensed phenomenon and the correlation in the location of the sensor nodes. The main application area of the performance prediction metric lies in the design and optimisation of WSNs prior to the costly deployment phase. Since extensive simulations can be completely avoided it serves as a rapid and lightweight evaluation tool for comparative analysis of WSNs. The concept is applicable and also extensible through merging of selected performance criteria.</description><identifier>ISSN: 1090-3038</identifier><identifier>ISBN: 1424435730</identifier><identifier>ISBN: 9781424435739</identifier><identifier>EISSN: 2577-2465</identifier><identifier>EISBN: 1424435749</identifier><identifier>EISBN: 9781424435746</identifier><identifier>DOI: 10.1109/VETECF.2010.5594519</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Correlation ; Energy consumption ; Measurement ; Sensors ; Topology ; Wireless sensor networks</subject><ispartof>2010 IEEE 72nd Vehicular Technology Conference - Fall, 2010, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5594519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5594519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oldewurtel, F</creatorcontrib><creatorcontrib>Mähönen, P</creatorcontrib><title>Metrics for Performance Prediction of Wireless Sensor Networks</title><title>2010 IEEE 72nd Vehicular Technology Conference - Fall</title><addtitle>VETECF</addtitle><description>We present the derivation of a novel metric for the performance prediction of Wireless Sensor Networks (WSNs). In particular, the metric can be applied in, for example, monitoring and surveillance applications where WSNs are used. Those networks execute protocols or techniques that are often sensitive to spatial correlation. The proposed metric is based on the correlation in the sensed phenomenon and the correlation in the location of the sensor nodes. The main application area of the performance prediction metric lies in the design and optimisation of WSNs prior to the costly deployment phase. Since extensive simulations can be completely avoided it serves as a rapid and lightweight evaluation tool for comparative analysis of WSNs. The concept is applicable and also extensible through merging of selected performance criteria.</description><subject>Analytical models</subject><subject>Correlation</subject><subject>Energy consumption</subject><subject>Measurement</subject><subject>Sensors</subject><subject>Topology</subject><subject>Wireless sensor networks</subject><issn>1090-3038</issn><issn>2577-2465</issn><isbn>1424435730</isbn><isbn>9781424435739</isbn><isbn>1424435749</isbn><isbn>9781424435746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKAzEUhuMNnFafoJu8wNTcTjKzEWSYqlC1YNVlSZMzEG1nJBmQvr0BC64--G-Ln5AZZ3POWX3z3q7bZjEXLAsAtQJen5AJV0IpCUbVp6QQYEwplIazf0Oyc1LkPislk9UlmaT0yRjjXIuC3D7hGINLtBsiXWHM2NveIV1F9MGNYejp0NGPEHGHKdFX7FNOPuP4M8SvdEUuOrtLeH3klLwt2nXzUC5f7h-bu2UZuIGx7IS1SqNCZdB7qTgIp7OESvPseYtCgK9BewPC-MrxrXZot8Aqq3Ut5ZTM_nYDIm6-Y9jbeNgcT5C_wE1NSQ</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Oldewurtel, F</creator><creator>Mähönen, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Metrics for Performance Prediction of Wireless Sensor Networks</title><author>Oldewurtel, F ; Mähönen, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2aa46e4e47edd34152c6aa4e461f2adae225d956d7527d8c1b6ceab508a66933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Correlation</topic><topic>Energy consumption</topic><topic>Measurement</topic><topic>Sensors</topic><topic>Topology</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Oldewurtel, F</creatorcontrib><creatorcontrib>Mähönen, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oldewurtel, F</au><au>Mähönen, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metrics for Performance Prediction of Wireless Sensor Networks</atitle><btitle>2010 IEEE 72nd Vehicular Technology Conference - Fall</btitle><stitle>VETECF</stitle><date>2010-09</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1090-3038</issn><eissn>2577-2465</eissn><isbn>1424435730</isbn><isbn>9781424435739</isbn><eisbn>1424435749</eisbn><eisbn>9781424435746</eisbn><abstract>We present the derivation of a novel metric for the performance prediction of Wireless Sensor Networks (WSNs). In particular, the metric can be applied in, for example, monitoring and surveillance applications where WSNs are used. Those networks execute protocols or techniques that are often sensitive to spatial correlation. The proposed metric is based on the correlation in the sensed phenomenon and the correlation in the location of the sensor nodes. The main application area of the performance prediction metric lies in the design and optimisation of WSNs prior to the costly deployment phase. Since extensive simulations can be completely avoided it serves as a rapid and lightweight evaluation tool for comparative analysis of WSNs. The concept is applicable and also extensible through merging of selected performance criteria.</abstract><pub>IEEE</pub><doi>10.1109/VETECF.2010.5594519</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1090-3038 |
ispartof | 2010 IEEE 72nd Vehicular Technology Conference - Fall, 2010, p.1-5 |
issn | 1090-3038 2577-2465 |
language | eng |
recordid | cdi_ieee_primary_5594519 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Correlation Energy consumption Measurement Sensors Topology Wireless sensor networks |
title | Metrics for Performance Prediction of Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metrics%20for%20Performance%20Prediction%20of%20Wireless%20Sensor%20Networks&rft.btitle=2010%20IEEE%2072nd%20Vehicular%20Technology%20Conference%20-%20Fall&rft.au=Oldewurtel,%20F&rft.date=2010-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1090-3038&rft.eissn=2577-2465&rft.isbn=1424435730&rft.isbn_list=9781424435739&rft_id=info:doi/10.1109/VETECF.2010.5594519&rft_dat=%3Cieee_6IE%3E5594519%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424435749&rft.eisbn_list=9781424435746&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5594519&rfr_iscdi=true |