Constructing competitive and cooperative agent behavior using coevolution

In nature, multiple agents in teams collaborate and compete with one another at the same time. Replicating such agent interactions in games can make for realistic opponent teams. Yet cooperation and competition have mostly been studied separately so far. This paper focuses on simultaneous cooperativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rawal, A, Rajagopalan, P, Miikkulainen, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 107
container_title
container_volume
creator Rawal, A
Rajagopalan, P
Miikkulainen, R
description In nature, multiple agents in teams collaborate and compete with one another at the same time. Replicating such agent interactions in games can make for realistic opponent teams. Yet cooperation and competition have mostly been studied separately so far. This paper focuses on simultaneous cooperative and competitive coevolution in a complex predator-prey domain. Multi-Agent ESP [23] architecture is first used to evolve neural networks to control predator and prey agents, but such a naive combination of otherwise successful architectures turns out not to sustain an arms race. An extended architecture consisting of multiple cooperating neural networks within each agent is therefore introduced. This architecture successfully results in hierarchical cooperation and competition in teams of prey and predators: In sustained coevolution, high-level pursuit-evasion behaviors emerge. In this manner, coevolution of neural networks is shown to scale up to an arms race of multiple competing and cooperating agents, more closely modeling coevolution of complex behavior in nature.
doi_str_mv 10.1109/ITW.2010.5593366
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5593366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5593366</ieee_id><sourcerecordid>5593366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-805895aed876e1fcca1c638034dc5d298f683cd8332c81411e8c5beaf4b5efbc3</originalsourceid><addsrcrecordid>eNpV0M1Kw0AUBeARFSw1e8FNXiB1_nNnKUFtoOAm4LJMJjd1pM2EZBLw7Q2kG1eXb3EOnEvIE6M7xqh5KauvHaeLlDJCaH1DEpMDk1xKzY2Wt_-s8juy4YKrTPKcPpBkHH8opYIBgIYNKYvQjXGYXPTdKXXh0mP00c-Y2q5ZHHoc7OoTdjGt8dvOPgzpNK4BnMN5ij50j-S-tecRk-vdkur9rSr22eHzoyxeD5k3NGZAFRhlsYFcI2uds8xpAVTIxqmGG2g1CNeAENwtIxhDcKpG28paYVs7sSXPa61HxGM_-Isdfo_XX4g_OpZRvA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constructing competitive and cooperative agent behavior using coevolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rawal, A ; Rajagopalan, P ; Miikkulainen, R</creator><creatorcontrib>Rawal, A ; Rajagopalan, P ; Miikkulainen, R</creatorcontrib><description>In nature, multiple agents in teams collaborate and compete with one another at the same time. Replicating such agent interactions in games can make for realistic opponent teams. Yet cooperation and competition have mostly been studied separately so far. This paper focuses on simultaneous cooperative and competitive coevolution in a complex predator-prey domain. Multi-Agent ESP [23] architecture is first used to evolve neural networks to control predator and prey agents, but such a naive combination of otherwise successful architectures turns out not to sustain an arms race. An extended architecture consisting of multiple cooperating neural networks within each agent is therefore introduced. This architecture successfully results in hierarchical cooperation and competition in teams of prey and predators: In sustained coevolution, high-level pursuit-evasion behaviors emerge. In this manner, coevolution of neural networks is shown to scale up to an arms race of multiple competing and cooperating agents, more closely modeling coevolution of complex behavior in nature.</description><identifier>ISSN: 2325-4270</identifier><identifier>ISBN: 9781424462957</identifier><identifier>ISBN: 1424462959</identifier><identifier>EISBN: 9781424462964</identifier><identifier>EISBN: 1424462967</identifier><identifier>DOI: 10.1109/ITW.2010.5593366</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational intelligence ; Computer architecture ; Games ; Neurons ; Robots ; Videos</subject><ispartof>Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, 2010, p.107-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5593366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5593366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rawal, A</creatorcontrib><creatorcontrib>Rajagopalan, P</creatorcontrib><creatorcontrib>Miikkulainen, R</creatorcontrib><title>Constructing competitive and cooperative agent behavior using coevolution</title><title>Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games</title><addtitle>CIG</addtitle><description>In nature, multiple agents in teams collaborate and compete with one another at the same time. Replicating such agent interactions in games can make for realistic opponent teams. Yet cooperation and competition have mostly been studied separately so far. This paper focuses on simultaneous cooperative and competitive coevolution in a complex predator-prey domain. Multi-Agent ESP [23] architecture is first used to evolve neural networks to control predator and prey agents, but such a naive combination of otherwise successful architectures turns out not to sustain an arms race. An extended architecture consisting of multiple cooperating neural networks within each agent is therefore introduced. This architecture successfully results in hierarchical cooperation and competition in teams of prey and predators: In sustained coevolution, high-level pursuit-evasion behaviors emerge. In this manner, coevolution of neural networks is shown to scale up to an arms race of multiple competing and cooperating agents, more closely modeling coevolution of complex behavior in nature.</description><subject>Artificial neural networks</subject><subject>Computational intelligence</subject><subject>Computer architecture</subject><subject>Games</subject><subject>Neurons</subject><subject>Robots</subject><subject>Videos</subject><issn>2325-4270</issn><isbn>9781424462957</isbn><isbn>1424462959</isbn><isbn>9781424462964</isbn><isbn>1424462967</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpV0M1Kw0AUBeARFSw1e8FNXiB1_nNnKUFtoOAm4LJMJjd1pM2EZBLw7Q2kG1eXb3EOnEvIE6M7xqh5KauvHaeLlDJCaH1DEpMDk1xKzY2Wt_-s8juy4YKrTPKcPpBkHH8opYIBgIYNKYvQjXGYXPTdKXXh0mP00c-Y2q5ZHHoc7OoTdjGt8dvOPgzpNK4BnMN5ij50j-S-tecRk-vdkur9rSr22eHzoyxeD5k3NGZAFRhlsYFcI2uds8xpAVTIxqmGG2g1CNeAENwtIxhDcKpG28paYVs7sSXPa61HxGM_-Isdfo_XX4g_OpZRvA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Rawal, A</creator><creator>Rajagopalan, P</creator><creator>Miikkulainen, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Constructing competitive and cooperative agent behavior using coevolution</title><author>Rawal, A ; Rajagopalan, P ; Miikkulainen, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-805895aed876e1fcca1c638034dc5d298f683cd8332c81411e8c5beaf4b5efbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Computational intelligence</topic><topic>Computer architecture</topic><topic>Games</topic><topic>Neurons</topic><topic>Robots</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Rawal, A</creatorcontrib><creatorcontrib>Rajagopalan, P</creatorcontrib><creatorcontrib>Miikkulainen, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rawal, A</au><au>Rajagopalan, P</au><au>Miikkulainen, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constructing competitive and cooperative agent behavior using coevolution</atitle><btitle>Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games</btitle><stitle>CIG</stitle><date>2010-08</date><risdate>2010</risdate><spage>107</spage><epage>114</epage><pages>107-114</pages><issn>2325-4270</issn><isbn>9781424462957</isbn><isbn>1424462959</isbn><eisbn>9781424462964</eisbn><eisbn>1424462967</eisbn><abstract>In nature, multiple agents in teams collaborate and compete with one another at the same time. Replicating such agent interactions in games can make for realistic opponent teams. Yet cooperation and competition have mostly been studied separately so far. This paper focuses on simultaneous cooperative and competitive coevolution in a complex predator-prey domain. Multi-Agent ESP [23] architecture is first used to evolve neural networks to control predator and prey agents, but such a naive combination of otherwise successful architectures turns out not to sustain an arms race. An extended architecture consisting of multiple cooperating neural networks within each agent is therefore introduced. This architecture successfully results in hierarchical cooperation and competition in teams of prey and predators: In sustained coevolution, high-level pursuit-evasion behaviors emerge. In this manner, coevolution of neural networks is shown to scale up to an arms race of multiple competing and cooperating agents, more closely modeling coevolution of complex behavior in nature.</abstract><pub>IEEE</pub><doi>10.1109/ITW.2010.5593366</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-4270
ispartof Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, 2010, p.107-114
issn 2325-4270
language eng
recordid cdi_ieee_primary_5593366
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computational intelligence
Computer architecture
Games
Neurons
Robots
Videos
title Constructing competitive and cooperative agent behavior using coevolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constructing%20competitive%20and%20cooperative%20agent%20behavior%20using%20coevolution&rft.btitle=Proceedings%20of%20the%202010%20IEEE%20Conference%20on%20Computational%20Intelligence%20and%20Games&rft.au=Rawal,%20A&rft.date=2010-08&rft.spage=107&rft.epage=114&rft.pages=107-114&rft.issn=2325-4270&rft.isbn=9781424462957&rft.isbn_list=1424462959&rft_id=info:doi/10.1109/ITW.2010.5593366&rft_dat=%3Cieee_6IE%3E5593366%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424462964&rft.eisbn_list=1424462967&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5593366&rfr_iscdi=true