Similarity Search in Time Series of Dynamical Model-based Systems
Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted fro...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | |
container_volume | |
creator | Kawagoe, K Bernecker, T Kriegel, H Renz, M Zimek, A Züfle, A |
description | Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method. |
doi_str_mv | 10.1109/DEXA.2010.41 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5592027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5592027</ieee_id><sourcerecordid>5592027</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6f87841dace0ff78e23c1cb5657930985d0377a33177db815dc21eacb6235be3</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0eEqF0Y2PxD7j4-hHbY9QHIBUxJANb5dg3wihpUZwlf08kOMvRWQ4hj8A3ANw97_af1UbwJRVckUJIY5l0oK_JPSihlOXKyRtSgBaOKbD2jqxz_uYLSoMtZUGqOg2p92OaZlqjH8MXTWfapAGXHBNmeunobj77IQXf0_dLxJ61PmOk9ZwnHPIDue18n3H97xVpDvtm-8qOHy9v2-rIkuMT82VnjVUQfUDedcaikAFCq0ttnOTO6silMV5KMCa2FnQMAtCHthRStyhX5OlvmxDx9DOmwY_zSWsnuDDyF2JVScc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</creator><creatorcontrib>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</creatorcontrib><description>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</description><identifier>ISSN: 1529-4188</identifier><identifier>ISBN: 1424480493</identifier><identifier>ISBN: 9781424480494</identifier><identifier>EISSN: 2378-3915</identifier><identifier>DOI: 10.1109/DEXA.2010.41</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological system modeling ; compartmental systems ; Equations ; internal features ; Mathematical model ; Perturbation methods ; S-systems ; similarity search ; time series ; Time series analysis</subject><ispartof>2010 Workshops on Database and Expert Systems Applications, 2010, p.110-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5592027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5592027$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kawagoe, K</creatorcontrib><creatorcontrib>Bernecker, T</creatorcontrib><creatorcontrib>Kriegel, H</creatorcontrib><creatorcontrib>Renz, M</creatorcontrib><creatorcontrib>Zimek, A</creatorcontrib><creatorcontrib>Züfle, A</creatorcontrib><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><title>2010 Workshops on Database and Expert Systems Applications</title><addtitle>DEXA</addtitle><description>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</description><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>compartmental systems</subject><subject>Equations</subject><subject>internal features</subject><subject>Mathematical model</subject><subject>Perturbation methods</subject><subject>S-systems</subject><subject>similarity search</subject><subject>time series</subject><subject>Time series analysis</subject><issn>1529-4188</issn><issn>2378-3915</issn><isbn>1424480493</isbn><isbn>9781424480494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0eEqF0Y2PxD7j4-hHbY9QHIBUxJANb5dg3wihpUZwlf08kOMvRWQ4hj8A3ANw97_af1UbwJRVckUJIY5l0oK_JPSihlOXKyRtSgBaOKbD2jqxz_uYLSoMtZUGqOg2p92OaZlqjH8MXTWfapAGXHBNmeunobj77IQXf0_dLxJ61PmOk9ZwnHPIDue18n3H97xVpDvtm-8qOHy9v2-rIkuMT82VnjVUQfUDedcaikAFCq0ttnOTO6silMV5KMCa2FnQMAtCHthRStyhX5OlvmxDx9DOmwY_zSWsnuDDyF2JVScc</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kawagoe, K</creator><creator>Bernecker, T</creator><creator>Kriegel, H</creator><creator>Renz, M</creator><creator>Zimek, A</creator><creator>Züfle, A</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><author>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6f87841dace0ff78e23c1cb5657930985d0377a33177db815dc21eacb6235be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>compartmental systems</topic><topic>Equations</topic><topic>internal features</topic><topic>Mathematical model</topic><topic>Perturbation methods</topic><topic>S-systems</topic><topic>similarity search</topic><topic>time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kawagoe, K</creatorcontrib><creatorcontrib>Bernecker, T</creatorcontrib><creatorcontrib>Kriegel, H</creatorcontrib><creatorcontrib>Renz, M</creatorcontrib><creatorcontrib>Zimek, A</creatorcontrib><creatorcontrib>Züfle, A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kawagoe, K</au><au>Bernecker, T</au><au>Kriegel, H</au><au>Renz, M</au><au>Zimek, A</au><au>Züfle, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Similarity Search in Time Series of Dynamical Model-based Systems</atitle><btitle>2010 Workshops on Database and Expert Systems Applications</btitle><stitle>DEXA</stitle><date>2010-08</date><risdate>2010</risdate><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>1529-4188</issn><eissn>2378-3915</eissn><isbn>1424480493</isbn><isbn>9781424480494</isbn><abstract>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</abstract><pub>IEEE</pub><doi>10.1109/DEXA.2010.41</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1529-4188 |
ispartof | 2010 Workshops on Database and Expert Systems Applications, 2010, p.110-114 |
issn | 1529-4188 2378-3915 |
language | eng |
recordid | cdi_ieee_primary_5592027 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Biological system modeling compartmental systems Equations internal features Mathematical model Perturbation methods S-systems similarity search time series Time series analysis |
title | Similarity Search in Time Series of Dynamical Model-based Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Similarity%20Search%20in%20Time%20Series%20of%20Dynamical%20Model-based%20Systems&rft.btitle=2010%20Workshops%20on%20Database%20and%20Expert%20Systems%20Applications&rft.au=Kawagoe,%20K&rft.date=2010-08&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=1529-4188&rft.eissn=2378-3915&rft.isbn=1424480493&rft.isbn_list=9781424480494&rft_id=info:doi/10.1109/DEXA.2010.41&rft_dat=%3Cieee_6IE%3E5592027%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5592027&rfr_iscdi=true |