Similarity Search in Time Series of Dynamical Model-based Systems

Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kawagoe, K, Bernecker, T, Kriegel, H, Renz, M, Zimek, A, Züfle, A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 110
container_title
container_volume
creator Kawagoe, K
Bernecker, T
Kriegel, H
Renz, M
Zimek, A
Züfle, A
description Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.
doi_str_mv 10.1109/DEXA.2010.41
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5592027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5592027</ieee_id><sourcerecordid>5592027</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6f87841dace0ff78e23c1cb5657930985d0377a33177db815dc21eacb6235be3</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0eEqF0Y2PxD7j4-hHbY9QHIBUxJANb5dg3wihpUZwlf08kOMvRWQ4hj8A3ANw97_af1UbwJRVckUJIY5l0oK_JPSihlOXKyRtSgBaOKbD2jqxz_uYLSoMtZUGqOg2p92OaZlqjH8MXTWfapAGXHBNmeunobj77IQXf0_dLxJ61PmOk9ZwnHPIDue18n3H97xVpDvtm-8qOHy9v2-rIkuMT82VnjVUQfUDedcaikAFCq0ttnOTO6silMV5KMCa2FnQMAtCHthRStyhX5OlvmxDx9DOmwY_zSWsnuDDyF2JVScc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</creator><creatorcontrib>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</creatorcontrib><description>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</description><identifier>ISSN: 1529-4188</identifier><identifier>ISBN: 1424480493</identifier><identifier>ISBN: 9781424480494</identifier><identifier>EISSN: 2378-3915</identifier><identifier>DOI: 10.1109/DEXA.2010.41</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological system modeling ; compartmental systems ; Equations ; internal features ; Mathematical model ; Perturbation methods ; S-systems ; similarity search ; time series ; Time series analysis</subject><ispartof>2010 Workshops on Database and Expert Systems Applications, 2010, p.110-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5592027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5592027$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kawagoe, K</creatorcontrib><creatorcontrib>Bernecker, T</creatorcontrib><creatorcontrib>Kriegel, H</creatorcontrib><creatorcontrib>Renz, M</creatorcontrib><creatorcontrib>Zimek, A</creatorcontrib><creatorcontrib>Züfle, A</creatorcontrib><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><title>2010 Workshops on Database and Expert Systems Applications</title><addtitle>DEXA</addtitle><description>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</description><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>compartmental systems</subject><subject>Equations</subject><subject>internal features</subject><subject>Mathematical model</subject><subject>Perturbation methods</subject><subject>S-systems</subject><subject>similarity search</subject><subject>time series</subject><subject>Time series analysis</subject><issn>1529-4188</issn><issn>2378-3915</issn><isbn>1424480493</isbn><isbn>9781424480494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0eEqF0Y2PxD7j4-hHbY9QHIBUxJANb5dg3wihpUZwlf08kOMvRWQ4hj8A3ANw97_af1UbwJRVckUJIY5l0oK_JPSihlOXKyRtSgBaOKbD2jqxz_uYLSoMtZUGqOg2p92OaZlqjH8MXTWfapAGXHBNmeunobj77IQXf0_dLxJ61PmOk9ZwnHPIDue18n3H97xVpDvtm-8qOHy9v2-rIkuMT82VnjVUQfUDedcaikAFCq0ttnOTO6silMV5KMCa2FnQMAtCHthRStyhX5OlvmxDx9DOmwY_zSWsnuDDyF2JVScc</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kawagoe, K</creator><creator>Bernecker, T</creator><creator>Kriegel, H</creator><creator>Renz, M</creator><creator>Zimek, A</creator><creator>Züfle, A</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Similarity Search in Time Series of Dynamical Model-based Systems</title><author>Kawagoe, K ; Bernecker, T ; Kriegel, H ; Renz, M ; Zimek, A ; Züfle, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6f87841dace0ff78e23c1cb5657930985d0377a33177db815dc21eacb6235be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>compartmental systems</topic><topic>Equations</topic><topic>internal features</topic><topic>Mathematical model</topic><topic>Perturbation methods</topic><topic>S-systems</topic><topic>similarity search</topic><topic>time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kawagoe, K</creatorcontrib><creatorcontrib>Bernecker, T</creatorcontrib><creatorcontrib>Kriegel, H</creatorcontrib><creatorcontrib>Renz, M</creatorcontrib><creatorcontrib>Zimek, A</creatorcontrib><creatorcontrib>Züfle, A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kawagoe, K</au><au>Bernecker, T</au><au>Kriegel, H</au><au>Renz, M</au><au>Zimek, A</au><au>Züfle, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Similarity Search in Time Series of Dynamical Model-based Systems</atitle><btitle>2010 Workshops on Database and Expert Systems Applications</btitle><stitle>DEXA</stitle><date>2010-08</date><risdate>2010</risdate><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>1529-4188</issn><eissn>2378-3915</eissn><isbn>1424480493</isbn><isbn>9781424480494</isbn><abstract>Similarity search in time series is usually based on an assessment of the geometric similarity of the time series curves. In bioinformatics, dynamical model-based analysis and processing is used, where the curve itself is not meaningful. However, some internal features based on a model extracted from time series are meaningful. Therefore, the similarity is based on a dynamical model explaining the observation instead of being based merely on the superficial observation. There currently exist no methods for meaningful similarity search on such time series data emerging in bioinformatics. In this paper, we introduce a new similarity search method for time series based on similarity of internal features, called the perturbation method.</abstract><pub>IEEE</pub><doi>10.1109/DEXA.2010.41</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1529-4188
ispartof 2010 Workshops on Database and Expert Systems Applications, 2010, p.110-114
issn 1529-4188
2378-3915
language eng
recordid cdi_ieee_primary_5592027
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Biological system modeling
compartmental systems
Equations
internal features
Mathematical model
Perturbation methods
S-systems
similarity search
time series
Time series analysis
title Similarity Search in Time Series of Dynamical Model-based Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Similarity%20Search%20in%20Time%20Series%20of%20Dynamical%20Model-based%20Systems&rft.btitle=2010%20Workshops%20on%20Database%20and%20Expert%20Systems%20Applications&rft.au=Kawagoe,%20K&rft.date=2010-08&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=1529-4188&rft.eissn=2378-3915&rft.isbn=1424480493&rft.isbn_list=9781424480494&rft_id=info:doi/10.1109/DEXA.2010.41&rft_dat=%3Cieee_6IE%3E5592027%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5592027&rfr_iscdi=true