Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis

To address the problem of outlier detection in wireless sensor networks, in this paper we propose a robust principal component analysis based technique to detect anomalous or faulty sensor data in a distributed wireless sensor network with a focus on data integrity and accuracy problem. The main key...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chitradevi, N, Palanisamy, V, Baskaran, K, Nisha, U Barakkath
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Chitradevi, N
Palanisamy, V
Baskaran, K
Nisha, U Barakkath
description To address the problem of outlier detection in wireless sensor networks, in this paper we propose a robust principal component analysis based technique to detect anomalous or faulty sensor data in a distributed wireless sensor network with a focus on data integrity and accuracy problem. The main key features are that it considers the correlation existing among the sensor data in order to disclose anomalies that span through a number of neighboring sensors, does not require error free data for PCA model construction and the operation takes place in a distributed fashion. In this paper, a two-step algorithm is proposed. First, the intent was to find an accurate estimate of the correlation of sensor data to build up a robust PCA model that could then be used for fault detection. This locally developed correlation based robust PCA model tends to accentuate the contribution of close observations in comparison with distant observations and does not impose any constraints in model design. Second, we use mahalanobis distance, a multivariate distance metric to determine the similarity between the current sensor readings against the developed sensor data model. Combined with component analysis, mahalanobis distance is extended to examine whether a sensor node is an outlier from a model defined by principal components based on principal component analysis. We examined the algorithm's performance using simulation with synthetic and real sensor data streams. The results clearly show that our approach outperforms existing methods in terms of accuracy even when processing corrupted data.
doi_str_mv 10.1109/ICCCNT.2010.5591850
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5591850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5591850</ieee_id><sourcerecordid>5591850</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d91a487bf9cd6b234d607a7afa94826d2b88eccc5f813dfc20025bdabd0fc74d3</originalsourceid><addsrcrecordid>eNpFkM9qAyEYxC2l0DbNE-TiCyRVV3fXY1n6JxCSS-7hU79dbDca1CXk7RtooHMZ5ncYhiFkwdmKc6Zf113Xbfcrwa5AKc1bxe7IM5dCylpp1tz_B64eyTznb3aVVEKI-onE3VRGj4nCGRJSBwUoDEPCAYqPgfpAnc8leTMVdPTsE46YM80Yckw0YDnH9EOn7MNAUzRTLvSUfLD-BCO18XiKAUOhEGC8ZJ9fyEMPY8b5zWdk__G-776Wm93nunvbLL1mZek0B9k2ptfW1UZU0tWsgQZ60LIVtROmbdFaq_qWV663gjGhjAPjWG8b6aoZWfzVekQ8XAcdIV0Ot3-qX2IaXj8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chitradevi, N ; Palanisamy, V ; Baskaran, K ; Nisha, U Barakkath</creator><creatorcontrib>Chitradevi, N ; Palanisamy, V ; Baskaran, K ; Nisha, U Barakkath</creatorcontrib><description>To address the problem of outlier detection in wireless sensor networks, in this paper we propose a robust principal component analysis based technique to detect anomalous or faulty sensor data in a distributed wireless sensor network with a focus on data integrity and accuracy problem. The main key features are that it considers the correlation existing among the sensor data in order to disclose anomalies that span through a number of neighboring sensors, does not require error free data for PCA model construction and the operation takes place in a distributed fashion. In this paper, a two-step algorithm is proposed. First, the intent was to find an accurate estimate of the correlation of sensor data to build up a robust PCA model that could then be used for fault detection. This locally developed correlation based robust PCA model tends to accentuate the contribution of close observations in comparison with distant observations and does not impose any constraints in model design. Second, we use mahalanobis distance, a multivariate distance metric to determine the similarity between the current sensor readings against the developed sensor data model. Combined with component analysis, mahalanobis distance is extended to examine whether a sensor node is an outlier from a model defined by principal components based on principal component analysis. We examined the algorithm's performance using simulation with synthetic and real sensor data streams. The results clearly show that our approach outperforms existing methods in terms of accuracy even when processing corrupted data.</description><identifier>ISBN: 1424465915</identifier><identifier>ISBN: 9781424465910</identifier><identifier>EISBN: 1424465907</identifier><identifier>EISBN: 9781424465927</identifier><identifier>EISBN: 1424465923</identifier><identifier>EISBN: 9781424465903</identifier><identifier>DOI: 10.1109/ICCCNT.2010.5591850</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregation ; Correlation ; Data models ; Distance Measure ; Distributed databases ; Monitoring ; Outlier ; Principal component analysis ; robust PCA ; Robustness ; Sensor Network ; Wireless sensor networks</subject><ispartof>2010 Second International conference on Computing, Communication and Networking Technologies, 2010, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5591850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5591850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chitradevi, N</creatorcontrib><creatorcontrib>Palanisamy, V</creatorcontrib><creatorcontrib>Baskaran, K</creatorcontrib><creatorcontrib>Nisha, U Barakkath</creatorcontrib><title>Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis</title><title>2010 Second International conference on Computing, Communication and Networking Technologies</title><addtitle>ICCCNT</addtitle><description>To address the problem of outlier detection in wireless sensor networks, in this paper we propose a robust principal component analysis based technique to detect anomalous or faulty sensor data in a distributed wireless sensor network with a focus on data integrity and accuracy problem. The main key features are that it considers the correlation existing among the sensor data in order to disclose anomalies that span through a number of neighboring sensors, does not require error free data for PCA model construction and the operation takes place in a distributed fashion. In this paper, a two-step algorithm is proposed. First, the intent was to find an accurate estimate of the correlation of sensor data to build up a robust PCA model that could then be used for fault detection. This locally developed correlation based robust PCA model tends to accentuate the contribution of close observations in comparison with distant observations and does not impose any constraints in model design. Second, we use mahalanobis distance, a multivariate distance metric to determine the similarity between the current sensor readings against the developed sensor data model. Combined with component analysis, mahalanobis distance is extended to examine whether a sensor node is an outlier from a model defined by principal components based on principal component analysis. We examined the algorithm's performance using simulation with synthetic and real sensor data streams. The results clearly show that our approach outperforms existing methods in terms of accuracy even when processing corrupted data.</description><subject>Aggregation</subject><subject>Correlation</subject><subject>Data models</subject><subject>Distance Measure</subject><subject>Distributed databases</subject><subject>Monitoring</subject><subject>Outlier</subject><subject>Principal component analysis</subject><subject>robust PCA</subject><subject>Robustness</subject><subject>Sensor Network</subject><subject>Wireless sensor networks</subject><isbn>1424465915</isbn><isbn>9781424465910</isbn><isbn>1424465907</isbn><isbn>9781424465927</isbn><isbn>1424465923</isbn><isbn>9781424465903</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM9qAyEYxC2l0DbNE-TiCyRVV3fXY1n6JxCSS-7hU79dbDca1CXk7RtooHMZ5ncYhiFkwdmKc6Zf113Xbfcrwa5AKc1bxe7IM5dCylpp1tz_B64eyTznb3aVVEKI-onE3VRGj4nCGRJSBwUoDEPCAYqPgfpAnc8leTMVdPTsE46YM80Yckw0YDnH9EOn7MNAUzRTLvSUfLD-BCO18XiKAUOhEGC8ZJ9fyEMPY8b5zWdk__G-776Wm93nunvbLL1mZek0B9k2ptfW1UZU0tWsgQZ60LIVtROmbdFaq_qWV663gjGhjAPjWG8b6aoZWfzVekQ8XAcdIV0Ot3-qX2IaXj8</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Chitradevi, N</creator><creator>Palanisamy, V</creator><creator>Baskaran, K</creator><creator>Nisha, U Barakkath</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis</title><author>Chitradevi, N ; Palanisamy, V ; Baskaran, K ; Nisha, U Barakkath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d91a487bf9cd6b234d607a7afa94826d2b88eccc5f813dfc20025bdabd0fc74d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aggregation</topic><topic>Correlation</topic><topic>Data models</topic><topic>Distance Measure</topic><topic>Distributed databases</topic><topic>Monitoring</topic><topic>Outlier</topic><topic>Principal component analysis</topic><topic>robust PCA</topic><topic>Robustness</topic><topic>Sensor Network</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chitradevi, N</creatorcontrib><creatorcontrib>Palanisamy, V</creatorcontrib><creatorcontrib>Baskaran, K</creatorcontrib><creatorcontrib>Nisha, U Barakkath</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chitradevi, N</au><au>Palanisamy, V</au><au>Baskaran, K</au><au>Nisha, U Barakkath</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis</atitle><btitle>2010 Second International conference on Computing, Communication and Networking Technologies</btitle><stitle>ICCCNT</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><isbn>1424465915</isbn><isbn>9781424465910</isbn><eisbn>1424465907</eisbn><eisbn>9781424465927</eisbn><eisbn>1424465923</eisbn><eisbn>9781424465903</eisbn><abstract>To address the problem of outlier detection in wireless sensor networks, in this paper we propose a robust principal component analysis based technique to detect anomalous or faulty sensor data in a distributed wireless sensor network with a focus on data integrity and accuracy problem. The main key features are that it considers the correlation existing among the sensor data in order to disclose anomalies that span through a number of neighboring sensors, does not require error free data for PCA model construction and the operation takes place in a distributed fashion. In this paper, a two-step algorithm is proposed. First, the intent was to find an accurate estimate of the correlation of sensor data to build up a robust PCA model that could then be used for fault detection. This locally developed correlation based robust PCA model tends to accentuate the contribution of close observations in comparison with distant observations and does not impose any constraints in model design. Second, we use mahalanobis distance, a multivariate distance metric to determine the similarity between the current sensor readings against the developed sensor data model. Combined with component analysis, mahalanobis distance is extended to examine whether a sensor node is an outlier from a model defined by principal components based on principal component analysis. We examined the algorithm's performance using simulation with synthetic and real sensor data streams. The results clearly show that our approach outperforms existing methods in terms of accuracy even when processing corrupted data.</abstract><pub>IEEE</pub><doi>10.1109/ICCCNT.2010.5591850</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424465915
ispartof 2010 Second International conference on Computing, Communication and Networking Technologies, 2010, p.1-9
issn
language eng
recordid cdi_ieee_primary_5591850
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregation
Correlation
Data models
Distance Measure
Distributed databases
Monitoring
Outlier
Principal component analysis
robust PCA
Robustness
Sensor Network
Wireless sensor networks
title Outlier aware data aggregation in distributed wireless sensor network using robust principal component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Outlier%20aware%20data%20aggregation%20in%20distributed%20wireless%20sensor%20network%20using%20robust%20principal%20component%20analysis&rft.btitle=2010%20Second%20International%20conference%20on%20Computing,%20Communication%20and%20Networking%20Technologies&rft.au=Chitradevi,%20N&rft.date=2010-07&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.isbn=1424465915&rft.isbn_list=9781424465910&rft_id=info:doi/10.1109/ICCCNT.2010.5591850&rft_dat=%3Cieee_6IE%3E5591850%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424465907&rft.eisbn_list=9781424465927&rft.eisbn_list=1424465923&rft.eisbn_list=9781424465903&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5591850&rfr_iscdi=true