Reverse Logistics Optimization Based on Parallel Genetic Algorithm
This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3278 |
---|---|
container_issue | |
container_start_page | 3275 |
container_title | |
container_volume | |
creator | Sibo Ding |
description | This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate. |
doi_str_mv | 10.1109/ICEE.2010.824 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5591077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5591077</ieee_id><sourcerecordid>5591077</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-48c105017da78801a90769ac0a2482076e2327f254f82ff4c8f9711617c105693</originalsourceid><addsrcrecordid>eNotjUtLAzEUheNCqNYuXbnJH5h6byaTx7IdxloYqJTuS5je1EimUyaDoL_eiK7Od-A8GHtEWCKCfd7WTbMUkK0R8obdoxRSKiW1nLFFSh8AgFopofCOrff0SWMi3g7nkKbQJb67TqEP324Kw4WvXaITz_DmRhcjRb6hC-UcX8XzMIbpvX9gt97FRIt_nbPDS3OoX4t2t9nWq7YIFqZCmg6hyscnp40BdBa0sq4DJ6QRmUmUQntRSW-E97Iz3mpEhfq3p2w5Z09_s4GIjtcx9G78OlaVRdC6_AH3G0WJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sibo Ding</creator><creatorcontrib>Sibo Ding</creatorcontrib><description>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</description><identifier>EISBN: 1424466474</identifier><identifier>EISBN: 9780769539973</identifier><identifier>EISBN: 0769539971</identifier><identifier>EISBN: 9781424466474</identifier><identifier>DOI: 10.1109/ICEE.2010.824</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Indexes ; Materials ; network design ; parallel genetic algorithm ; queue theory ; Queueing analysis ; Reverse logistics ; Transportation</subject><ispartof>2010 International Conference on E-Business and E-Government, 2010, p.3275-3278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5591077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5591077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sibo Ding</creatorcontrib><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><title>2010 International Conference on E-Business and E-Government</title><addtitle>ICEBEG</addtitle><description>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</description><subject>Analytical models</subject><subject>Indexes</subject><subject>Materials</subject><subject>network design</subject><subject>parallel genetic algorithm</subject><subject>queue theory</subject><subject>Queueing analysis</subject><subject>Reverse logistics</subject><subject>Transportation</subject><isbn>1424466474</isbn><isbn>9780769539973</isbn><isbn>0769539971</isbn><isbn>9781424466474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjUtLAzEUheNCqNYuXbnJH5h6byaTx7IdxloYqJTuS5je1EimUyaDoL_eiK7Od-A8GHtEWCKCfd7WTbMUkK0R8obdoxRSKiW1nLFFSh8AgFopofCOrff0SWMi3g7nkKbQJb67TqEP324Kw4WvXaITz_DmRhcjRb6hC-UcX8XzMIbpvX9gt97FRIt_nbPDS3OoX4t2t9nWq7YIFqZCmg6hyscnp40BdBa0sq4DJ6QRmUmUQntRSW-E97Iz3mpEhfq3p2w5Z09_s4GIjtcx9G78OlaVRdC6_AH3G0WJ</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Sibo Ding</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><author>Sibo Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-48c105017da78801a90769ac0a2482076e2327f254f82ff4c8f9711617c105693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Indexes</topic><topic>Materials</topic><topic>network design</topic><topic>parallel genetic algorithm</topic><topic>queue theory</topic><topic>Queueing analysis</topic><topic>Reverse logistics</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sibo Ding</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sibo Ding</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</atitle><btitle>2010 International Conference on E-Business and E-Government</btitle><stitle>ICEBEG</stitle><date>2010-05</date><risdate>2010</risdate><spage>3275</spage><epage>3278</epage><pages>3275-3278</pages><eisbn>1424466474</eisbn><eisbn>9780769539973</eisbn><eisbn>0769539971</eisbn><eisbn>9781424466474</eisbn><abstract>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</abstract><pub>IEEE</pub><doi>10.1109/ICEE.2010.824</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1424466474 |
ispartof | 2010 International Conference on E-Business and E-Government, 2010, p.3275-3278 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5591077 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Indexes Materials network design parallel genetic algorithm queue theory Queueing analysis Reverse logistics Transportation |
title | Reverse Logistics Optimization Based on Parallel Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reverse%20Logistics%20Optimization%20Based%20on%20Parallel%20Genetic%20Algorithm&rft.btitle=2010%20International%20Conference%20on%20E-Business%20and%20E-Government&rft.au=Sibo%20Ding&rft.date=2010-05&rft.spage=3275&rft.epage=3278&rft.pages=3275-3278&rft_id=info:doi/10.1109/ICEE.2010.824&rft_dat=%3Cieee_6IE%3E5591077%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424466474&rft.eisbn_list=9780769539973&rft.eisbn_list=0769539971&rft.eisbn_list=9781424466474&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5591077&rfr_iscdi=true |