Reverse Logistics Optimization Based on Parallel Genetic Algorithm

This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sibo Ding
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3278
container_issue
container_start_page 3275
container_title
container_volume
creator Sibo Ding
description This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.
doi_str_mv 10.1109/ICEE.2010.824
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5591077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5591077</ieee_id><sourcerecordid>5591077</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-48c105017da78801a90769ac0a2482076e2327f254f82ff4c8f9711617c105693</originalsourceid><addsrcrecordid>eNotjUtLAzEUheNCqNYuXbnJH5h6byaTx7IdxloYqJTuS5je1EimUyaDoL_eiK7Od-A8GHtEWCKCfd7WTbMUkK0R8obdoxRSKiW1nLFFSh8AgFopofCOrff0SWMi3g7nkKbQJb67TqEP324Kw4WvXaITz_DmRhcjRb6hC-UcX8XzMIbpvX9gt97FRIt_nbPDS3OoX4t2t9nWq7YIFqZCmg6hyscnp40BdBa0sq4DJ6QRmUmUQntRSW-E97Iz3mpEhfq3p2w5Z09_s4GIjtcx9G78OlaVRdC6_AH3G0WJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sibo Ding</creator><creatorcontrib>Sibo Ding</creatorcontrib><description>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</description><identifier>EISBN: 1424466474</identifier><identifier>EISBN: 9780769539973</identifier><identifier>EISBN: 0769539971</identifier><identifier>EISBN: 9781424466474</identifier><identifier>DOI: 10.1109/ICEE.2010.824</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Indexes ; Materials ; network design ; parallel genetic algorithm ; queue theory ; Queueing analysis ; Reverse logistics ; Transportation</subject><ispartof>2010 International Conference on E-Business and E-Government, 2010, p.3275-3278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5591077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5591077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sibo Ding</creatorcontrib><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><title>2010 International Conference on E-Business and E-Government</title><addtitle>ICEBEG</addtitle><description>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</description><subject>Analytical models</subject><subject>Indexes</subject><subject>Materials</subject><subject>network design</subject><subject>parallel genetic algorithm</subject><subject>queue theory</subject><subject>Queueing analysis</subject><subject>Reverse logistics</subject><subject>Transportation</subject><isbn>1424466474</isbn><isbn>9780769539973</isbn><isbn>0769539971</isbn><isbn>9781424466474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjUtLAzEUheNCqNYuXbnJH5h6byaTx7IdxloYqJTuS5je1EimUyaDoL_eiK7Od-A8GHtEWCKCfd7WTbMUkK0R8obdoxRSKiW1nLFFSh8AgFopofCOrff0SWMi3g7nkKbQJb67TqEP324Kw4WvXaITz_DmRhcjRb6hC-UcX8XzMIbpvX9gt97FRIt_nbPDS3OoX4t2t9nWq7YIFqZCmg6hyscnp40BdBa0sq4DJ6QRmUmUQntRSW-E97Iz3mpEhfq3p2w5Z09_s4GIjtcx9G78OlaVRdC6_AH3G0WJ</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Sibo Ding</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</title><author>Sibo Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-48c105017da78801a90769ac0a2482076e2327f254f82ff4c8f9711617c105693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Indexes</topic><topic>Materials</topic><topic>network design</topic><topic>parallel genetic algorithm</topic><topic>queue theory</topic><topic>Queueing analysis</topic><topic>Reverse logistics</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sibo Ding</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sibo Ding</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reverse Logistics Optimization Based on Parallel Genetic Algorithm</atitle><btitle>2010 International Conference on E-Business and E-Government</btitle><stitle>ICEBEG</stitle><date>2010-05</date><risdate>2010</risdate><spage>3275</spage><epage>3278</epage><pages>3275-3278</pages><eisbn>1424466474</eisbn><eisbn>9780769539973</eisbn><eisbn>0769539971</eisbn><eisbn>9781424466474</eisbn><abstract>This paper is concerned with the efficient design of a reverse logistics network. The mixed integer linear models is formulated and determine how to optimize collection cost, transportation cost, fixed cost, variable cost, disposal cost, the sale revenue of reclaimed materials and revenue of selling two-hands products. GI/G/m queuing model presents uncertainty inherent to reverse logistics. In order to search for the optimal solution of this model, the paper proposes an algorithm based on the technique of Parallel Genetic Algorithm (PGA). To speed up the processing of generations of populations, parallel genetic algorithm splits the population into several sub-populations and run them in the parallel way. An example is solved by PGA and the result shows the algorithm has a rapid convergence rate.</abstract><pub>IEEE</pub><doi>10.1109/ICEE.2010.824</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1424466474
ispartof 2010 International Conference on E-Business and E-Government, 2010, p.3275-3278
issn
language eng
recordid cdi_ieee_primary_5591077
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Indexes
Materials
network design
parallel genetic algorithm
queue theory
Queueing analysis
Reverse logistics
Transportation
title Reverse Logistics Optimization Based on Parallel Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reverse%20Logistics%20Optimization%20Based%20on%20Parallel%20Genetic%20Algorithm&rft.btitle=2010%20International%20Conference%20on%20E-Business%20and%20E-Government&rft.au=Sibo%20Ding&rft.date=2010-05&rft.spage=3275&rft.epage=3278&rft.pages=3275-3278&rft_id=info:doi/10.1109/ICEE.2010.824&rft_dat=%3Cieee_6IE%3E5591077%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424466474&rft.eisbn_list=9780769539973&rft.eisbn_list=0769539971&rft.eisbn_list=9781424466474&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5591077&rfr_iscdi=true