Towards (Semi-) Automatic Moderation of Social Web Annotations
With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1128 |
---|---|
container_issue | |
container_start_page | 1123 |
container_title | |
container_volume | |
creator | Momeni, E |
description | With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches. |
doi_str_mv | 10.1109/SocialCom.2010.185 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5590545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5590545</ieee_id><sourcerecordid>5590545</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e664fc5e284a88327a87ddcf4a719b8b6b39f7f99c8b50507a5dac80dc9787123</originalsourceid><addsrcrecordid>eNotj01Lw0AYhFdEUGv-gF72qIfU3c1-vO9FCKV-QMVDAx7LfsJCk5UkIv57q_U0wzwwwxByzdmSc4b32-Kz3a9KvxTsNwN1Qio0wIxGJQXneEouuRRSgmyQn5NqmrJjQhsNUpgL8tCVLzuGid5uY5_rO9p-zqW3c_b0tYQ4HlwZaEn0uETfo6PtMJT5D0xX5CzZ_RSrf12Q7nHdrZ7rzdvTy6rd1BnZXEetZfIqCpAWoBHGggnBJ2kNRwdOuwaTSYgenGKKGauC9cCCP1wxXDQLcnOszTHG3ceYezt-75RCpqRqfgDzLEpi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Momeni, E</creator><creatorcontrib>Momeni, E</creatorcontrib><description>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</description><identifier>ISBN: 1424484391</identifier><identifier>ISBN: 9781424484393</identifier><identifier>EISBN: 9780769542119</identifier><identifier>EISBN: 0769542115</identifier><identifier>DOI: 10.1109/SocialCom.2010.185</identifier><language>eng</language><publisher>IEEE</publisher><subject>(Semi-) Automatic Content Moderation ; Blogs ; Cognition ; Context ; Linked Open Data ; Resource description framework ; Semantic Web ; Semantics ; Social network services ; Social Web Annotation</subject><ispartof>2010 IEEE Second International Conference on Social Computing, 2010, p.1123-1128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5590545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5590545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Momeni, E</creatorcontrib><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><title>2010 IEEE Second International Conference on Social Computing</title><addtitle>socialcom</addtitle><description>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</description><subject>(Semi-) Automatic Content Moderation</subject><subject>Blogs</subject><subject>Cognition</subject><subject>Context</subject><subject>Linked Open Data</subject><subject>Resource description framework</subject><subject>Semantic Web</subject><subject>Semantics</subject><subject>Social network services</subject><subject>Social Web Annotation</subject><isbn>1424484391</isbn><isbn>9781424484393</isbn><isbn>9780769542119</isbn><isbn>0769542115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhFdEUGv-gF72qIfU3c1-vO9FCKV-QMVDAx7LfsJCk5UkIv57q_U0wzwwwxByzdmSc4b32-Kz3a9KvxTsNwN1Qio0wIxGJQXneEouuRRSgmyQn5NqmrJjQhsNUpgL8tCVLzuGid5uY5_rO9p-zqW3c_b0tYQ4HlwZaEn0uETfo6PtMJT5D0xX5CzZ_RSrf12Q7nHdrZ7rzdvTy6rd1BnZXEetZfIqCpAWoBHGggnBJ2kNRwdOuwaTSYgenGKKGauC9cCCP1wxXDQLcnOszTHG3ceYezt-75RCpqRqfgDzLEpi</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Momeni, E</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><author>Momeni, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e664fc5e284a88327a87ddcf4a719b8b6b39f7f99c8b50507a5dac80dc9787123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>(Semi-) Automatic Content Moderation</topic><topic>Blogs</topic><topic>Cognition</topic><topic>Context</topic><topic>Linked Open Data</topic><topic>Resource description framework</topic><topic>Semantic Web</topic><topic>Semantics</topic><topic>Social network services</topic><topic>Social Web Annotation</topic><toplevel>online_resources</toplevel><creatorcontrib>Momeni, E</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Momeni, E</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards (Semi-) Automatic Moderation of Social Web Annotations</atitle><btitle>2010 IEEE Second International Conference on Social Computing</btitle><stitle>socialcom</stitle><date>2010-08</date><risdate>2010</risdate><spage>1123</spage><epage>1128</epage><pages>1123-1128</pages><isbn>1424484391</isbn><isbn>9781424484393</isbn><eisbn>9780769542119</eisbn><eisbn>0769542115</eisbn><abstract>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</abstract><pub>IEEE</pub><doi>10.1109/SocialCom.2010.185</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424484391 |
ispartof | 2010 IEEE Second International Conference on Social Computing, 2010, p.1123-1128 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5590545 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | (Semi-) Automatic Content Moderation Blogs Cognition Context Linked Open Data Resource description framework Semantic Web Semantics Social network services Social Web Annotation |
title | Towards (Semi-) Automatic Moderation of Social Web Annotations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20(Semi-)%20Automatic%20Moderation%20of%20Social%20Web%20Annotations&rft.btitle=2010%20IEEE%20Second%20International%20Conference%20on%20Social%20Computing&rft.au=Momeni,%20E&rft.date=2010-08&rft.spage=1123&rft.epage=1128&rft.pages=1123-1128&rft.isbn=1424484391&rft.isbn_list=9781424484393&rft_id=info:doi/10.1109/SocialCom.2010.185&rft_dat=%3Cieee_6IE%3E5590545%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542119&rft.eisbn_list=0769542115&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5590545&rfr_iscdi=true |