Towards (Semi-) Automatic Moderation of Social Web Annotations

With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Momeni, E
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1128
container_issue
container_start_page 1123
container_title
container_volume
creator Momeni, E
description With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.
doi_str_mv 10.1109/SocialCom.2010.185
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5590545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5590545</ieee_id><sourcerecordid>5590545</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e664fc5e284a88327a87ddcf4a719b8b6b39f7f99c8b50507a5dac80dc9787123</originalsourceid><addsrcrecordid>eNotj01Lw0AYhFdEUGv-gF72qIfU3c1-vO9FCKV-QMVDAx7LfsJCk5UkIv57q_U0wzwwwxByzdmSc4b32-Kz3a9KvxTsNwN1Qio0wIxGJQXneEouuRRSgmyQn5NqmrJjQhsNUpgL8tCVLzuGid5uY5_rO9p-zqW3c_b0tYQ4HlwZaEn0uETfo6PtMJT5D0xX5CzZ_RSrf12Q7nHdrZ7rzdvTy6rd1BnZXEetZfIqCpAWoBHGggnBJ2kNRwdOuwaTSYgenGKKGauC9cCCP1wxXDQLcnOszTHG3ceYezt-75RCpqRqfgDzLEpi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Momeni, E</creator><creatorcontrib>Momeni, E</creatorcontrib><description>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</description><identifier>ISBN: 1424484391</identifier><identifier>ISBN: 9781424484393</identifier><identifier>EISBN: 9780769542119</identifier><identifier>EISBN: 0769542115</identifier><identifier>DOI: 10.1109/SocialCom.2010.185</identifier><language>eng</language><publisher>IEEE</publisher><subject>(Semi-) Automatic Content Moderation ; Blogs ; Cognition ; Context ; Linked Open Data ; Resource description framework ; Semantic Web ; Semantics ; Social network services ; Social Web Annotation</subject><ispartof>2010 IEEE Second International Conference on Social Computing, 2010, p.1123-1128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5590545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5590545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Momeni, E</creatorcontrib><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><title>2010 IEEE Second International Conference on Social Computing</title><addtitle>socialcom</addtitle><description>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</description><subject>(Semi-) Automatic Content Moderation</subject><subject>Blogs</subject><subject>Cognition</subject><subject>Context</subject><subject>Linked Open Data</subject><subject>Resource description framework</subject><subject>Semantic Web</subject><subject>Semantics</subject><subject>Social network services</subject><subject>Social Web Annotation</subject><isbn>1424484391</isbn><isbn>9781424484393</isbn><isbn>9780769542119</isbn><isbn>0769542115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhFdEUGv-gF72qIfU3c1-vO9FCKV-QMVDAx7LfsJCk5UkIv57q_U0wzwwwxByzdmSc4b32-Kz3a9KvxTsNwN1Qio0wIxGJQXneEouuRRSgmyQn5NqmrJjQhsNUpgL8tCVLzuGid5uY5_rO9p-zqW3c_b0tYQ4HlwZaEn0uETfo6PtMJT5D0xX5CzZ_RSrf12Q7nHdrZ7rzdvTy6rd1BnZXEetZfIqCpAWoBHGggnBJ2kNRwdOuwaTSYgenGKKGauC9cCCP1wxXDQLcnOszTHG3ceYezt-75RCpqRqfgDzLEpi</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Momeni, E</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Towards (Semi-) Automatic Moderation of Social Web Annotations</title><author>Momeni, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e664fc5e284a88327a87ddcf4a719b8b6b39f7f99c8b50507a5dac80dc9787123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>(Semi-) Automatic Content Moderation</topic><topic>Blogs</topic><topic>Cognition</topic><topic>Context</topic><topic>Linked Open Data</topic><topic>Resource description framework</topic><topic>Semantic Web</topic><topic>Semantics</topic><topic>Social network services</topic><topic>Social Web Annotation</topic><toplevel>online_resources</toplevel><creatorcontrib>Momeni, E</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Momeni, E</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards (Semi-) Automatic Moderation of Social Web Annotations</atitle><btitle>2010 IEEE Second International Conference on Social Computing</btitle><stitle>socialcom</stitle><date>2010-08</date><risdate>2010</risdate><spage>1123</spage><epage>1128</epage><pages>1123-1128</pages><isbn>1424484391</isbn><isbn>9781424484393</isbn><eisbn>9780769542119</eisbn><eisbn>0769542115</eisbn><abstract>With the rapid growth of social web, users' ability to publish content (e.g., annotating the multimedia resources in Youtube or Facebook) has created active electronic communities that provide a wealth of information. Subsequently mining and analyzing information content generated by the users are important research topics. Many existing researches have focussed on extraction, transformation, and summarization of information from annotated resources with the objective to classify the content of the annotations (e.g., how many percent of users agree/disagree on a specific topic). However, evaluating the content quality of the annotations is an important issue, which is not being taken into consideration by many of these researches. Unusualness in the sense of remarkable, vulgar, contrastive, unreliable or low-quality content of the social web annotations is not sufficiently analyzed in an automatic way. Therefore the task of (semi-)automatic, semantic moderation of social web annotations becomes increasingly important to identify unusualness among annotations. One of the current technologies, that provides a new framework for modeling and reasoning on social web relations and semantics in machine-processable structures, is the semantic web technology. This paper analyzes different dimensions of social web annotation and defines moderation requirements. Based on this analysis and the semantic web technology, a methodology for (semi-)automatic social web annotation moderation is proposed, which is an efficient extension and mash up of the previously mentioned approaches.</abstract><pub>IEEE</pub><doi>10.1109/SocialCom.2010.185</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424484391
ispartof 2010 IEEE Second International Conference on Social Computing, 2010, p.1123-1128
issn
language eng
recordid cdi_ieee_primary_5590545
source IEEE Electronic Library (IEL) Conference Proceedings
subjects (Semi-) Automatic Content Moderation
Blogs
Cognition
Context
Linked Open Data
Resource description framework
Semantic Web
Semantics
Social network services
Social Web Annotation
title Towards (Semi-) Automatic Moderation of Social Web Annotations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20(Semi-)%20Automatic%20Moderation%20of%20Social%20Web%20Annotations&rft.btitle=2010%20IEEE%20Second%20International%20Conference%20on%20Social%20Computing&rft.au=Momeni,%20E&rft.date=2010-08&rft.spage=1123&rft.epage=1128&rft.pages=1123-1128&rft.isbn=1424484391&rft.isbn_list=9781424484393&rft_id=info:doi/10.1109/SocialCom.2010.185&rft_dat=%3Cieee_6IE%3E5590545%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542119&rft.eisbn_list=0769542115&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5590545&rfr_iscdi=true