Web page repetitive structure and URL feature based Deep Web data extraction
Noise interference in web pages and the demand for multiple sample pages are the key issues of Deep Web data extraction. In this paper, we propose a novel web page repetitive structure and URL feature based approach for Deep Web data extraction. It employs continuous repetitive tag region and simila...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 361 |
container_title | |
container_volume | 1 |
creator | Xingyi Li Yanyan Kong Huaji Shi |
description | Noise interference in web pages and the demand for multiple sample pages are the key issues of Deep Web data extraction. In this paper, we propose a novel web page repetitive structure and URL feature based approach for Deep Web data extraction. It employs continuous repetitive tag region and similar URL to partition the sample page into blocks, locate the data region and extract specific URL template, which is further exploited to quickly identify the data region and the boundary of data records in similar pages. Experimental results show that our approach is highly effective for Deep Web data extraction. |
doi_str_mv | 10.1109/ICCSNA.2010.5588744 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5588744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5588744</ieee_id><sourcerecordid>5588744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-358a32a6771a20ed9dda73fc7320a4121a8e89a2cc3d4603e4668b6eda7d5fe53</originalsourceid><addsrcrecordid>eNo1T9tKAzEUjIig1v2CvuQHtuae7GNZb4VFQSs-lrPJWYloXZJU9O9dtc7LMMPMwBAy52zBOWvOV237cLtcCDYZWjtnlTogVWMdV0Ipq6w1h-T0X2hxTKqcX9gEpQXT-oR0T9jTEZ6RJhyxxBI_kOaSdr7sElLYBvp439EB4Vf3kDHQC8SR_hQDFKD4WRL4Et-3Z-RogNeM1Z5nZH11uW5v6u7uetUuuzo2rNRSO5ACjLUcBMPQhABWDt5KwUBxwcGha0B4L4MyTKIyxvUGp1TQA2o5I_O_2YiImzHFN0hfm_1_-Q3iLk64</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Web page repetitive structure and URL feature based Deep Web data extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xingyi Li ; Yanyan Kong ; Huaji Shi</creator><creatorcontrib>Xingyi Li ; Yanyan Kong ; Huaji Shi</creatorcontrib><description>Noise interference in web pages and the demand for multiple sample pages are the key issues of Deep Web data extraction. In this paper, we propose a novel web page repetitive structure and URL feature based approach for Deep Web data extraction. It employs continuous repetitive tag region and similar URL to partition the sample page into blocks, locate the data region and extract specific URL template, which is further exploited to quickly identify the data region and the boundary of data records in similar pages. Experimental results show that our approach is highly effective for Deep Web data extraction.</description><identifier>ISBN: 1424474752</identifier><identifier>ISBN: 9781424474752</identifier><identifier>EISBN: 9781424474776</identifier><identifier>EISBN: 1424474779</identifier><identifier>EISBN: 1424474787</identifier><identifier>EISBN: 9781424474783</identifier><identifier>DOI: 10.1109/ICCSNA.2010.5588744</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; data extraction ; Data mining ; Deep Web ; Educational institutions ; Feature extraction ; similar URL ; web page repetitive structure</subject><ispartof>2010 Second International Conference on Communication Systems, Networks and Applications, 2010, Vol.1, p.361-364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5588744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5588744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xingyi Li</creatorcontrib><creatorcontrib>Yanyan Kong</creatorcontrib><creatorcontrib>Huaji Shi</creatorcontrib><title>Web page repetitive structure and URL feature based Deep Web data extraction</title><title>2010 Second International Conference on Communication Systems, Networks and Applications</title><addtitle>ICCSNA</addtitle><description>Noise interference in web pages and the demand for multiple sample pages are the key issues of Deep Web data extraction. In this paper, we propose a novel web page repetitive structure and URL feature based approach for Deep Web data extraction. It employs continuous repetitive tag region and similar URL to partition the sample page into blocks, locate the data region and extract specific URL template, which is further exploited to quickly identify the data region and the boundary of data records in similar pages. Experimental results show that our approach is highly effective for Deep Web data extraction.</description><subject>Accuracy</subject><subject>data extraction</subject><subject>Data mining</subject><subject>Deep Web</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>similar URL</subject><subject>web page repetitive structure</subject><isbn>1424474752</isbn><isbn>9781424474752</isbn><isbn>9781424474776</isbn><isbn>1424474779</isbn><isbn>1424474787</isbn><isbn>9781424474783</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T9tKAzEUjIig1v2CvuQHtuae7GNZb4VFQSs-lrPJWYloXZJU9O9dtc7LMMPMwBAy52zBOWvOV237cLtcCDYZWjtnlTogVWMdV0Ipq6w1h-T0X2hxTKqcX9gEpQXT-oR0T9jTEZ6RJhyxxBI_kOaSdr7sElLYBvp439EB4Vf3kDHQC8SR_hQDFKD4WRL4Et-3Z-RogNeM1Z5nZH11uW5v6u7uetUuuzo2rNRSO5ACjLUcBMPQhABWDt5KwUBxwcGha0B4L4MyTKIyxvUGp1TQA2o5I_O_2YiImzHFN0hfm_1_-Q3iLk64</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Xingyi Li</creator><creator>Yanyan Kong</creator><creator>Huaji Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Web page repetitive structure and URL feature based Deep Web data extraction</title><author>Xingyi Li ; Yanyan Kong ; Huaji Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-358a32a6771a20ed9dda73fc7320a4121a8e89a2cc3d4603e4668b6eda7d5fe53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>data extraction</topic><topic>Data mining</topic><topic>Deep Web</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>similar URL</topic><topic>web page repetitive structure</topic><toplevel>online_resources</toplevel><creatorcontrib>Xingyi Li</creatorcontrib><creatorcontrib>Yanyan Kong</creatorcontrib><creatorcontrib>Huaji Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xingyi Li</au><au>Yanyan Kong</au><au>Huaji Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Web page repetitive structure and URL feature based Deep Web data extraction</atitle><btitle>2010 Second International Conference on Communication Systems, Networks and Applications</btitle><stitle>ICCSNA</stitle><date>2010-06</date><risdate>2010</risdate><volume>1</volume><spage>361</spage><epage>364</epage><pages>361-364</pages><isbn>1424474752</isbn><isbn>9781424474752</isbn><eisbn>9781424474776</eisbn><eisbn>1424474779</eisbn><eisbn>1424474787</eisbn><eisbn>9781424474783</eisbn><abstract>Noise interference in web pages and the demand for multiple sample pages are the key issues of Deep Web data extraction. In this paper, we propose a novel web page repetitive structure and URL feature based approach for Deep Web data extraction. It employs continuous repetitive tag region and similar URL to partition the sample page into blocks, locate the data region and extract specific URL template, which is further exploited to quickly identify the data region and the boundary of data records in similar pages. Experimental results show that our approach is highly effective for Deep Web data extraction.</abstract><pub>IEEE</pub><doi>10.1109/ICCSNA.2010.5588744</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424474752 |
ispartof | 2010 Second International Conference on Communication Systems, Networks and Applications, 2010, Vol.1, p.361-364 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5588744 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy data extraction Data mining Deep Web Educational institutions Feature extraction similar URL web page repetitive structure |
title | Web page repetitive structure and URL feature based Deep Web data extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Web%20page%20repetitive%20structure%20and%20URL%20feature%20based%20Deep%20Web%20data%20extraction&rft.btitle=2010%20Second%20International%20Conference%20on%20Communication%20Systems,%20Networks%20and%20Applications&rft.au=Xingyi%20Li&rft.date=2010-06&rft.volume=1&rft.spage=361&rft.epage=364&rft.pages=361-364&rft.isbn=1424474752&rft.isbn_list=9781424474752&rft_id=info:doi/10.1109/ICCSNA.2010.5588744&rft_dat=%3Cieee_6IE%3E5588744%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424474776&rft.eisbn_list=1424474779&rft.eisbn_list=1424474787&rft.eisbn_list=9781424474783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5588744&rfr_iscdi=true |